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Abstract In the domain of data preparation for supervised classification, fil-
ter methods for variable ranking are time efficient. However, their intrinsic
univariate limitation prevents them from detecting redundancies or construc-
tive interactions between variables. This paper introduces a new method to
automatically, rapidly and reliably extract the classificatory information of a
pair of input variables. It is based on a simultaneous partitioning of the do-
mains of each input variable, into intervals in the numerical case and into
groups of categories in the categorical case. The resulting input data grid al-
lows to quantify the joint information between the two input variables and
the output variable. The best joint partitioning is searched by maximizing
a Bayesian model selection criterion. Intensive experiments demonstrate the
benefits of the approach, especially the significant improvement of accuracy
for classification tasks.

Keywords Data preparation · Discretization · Feature selection · Model
selection · Supervised classification
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1 Introduction

In a data mining project, the data preparation phase aims at constructing a
data table for the modeling phase (Pyle, 1999; Chapman et al., 2000). The
data preparation is both time consuming and critical for the quality of the
mining results. It mainly consists in a search of an efficient data represen-
tation, based on variable selection. In this paper we will concentrate on a
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supervised classification problem with p categorical or numerical input vari-
ables and one output categorical variable with J classes (output category)
and assume that a pre-specified classifier is to be used. The basic problem is
to select or transform the variables in a way that maintains as much their
classificatory information as possible. In this situation, the purpose of variable
selection is three-fold: to improve the classifier accuracy, to reduce the train-
ing and deployment time, and to ease the comprehensibility of the classifier
(Guyon and Elisseeff, 2003; Guyon et al., 2006). Two main approaches, filter
and wrapper (Kohavi and John, 1997), have been studied in the literature.
Filter methods consider the correlation between the input variables and the
output variable as a pre-processing step, independently of the chosen classifier.
Wrapper methods search the best subset of variables for a given classification
technique, used as a black box. Wrapper methods, which are time consuming,
are restricted to the modeling phase of data mining, as a post-optimization
of a classifier. Filter methods are better suited to the data preparation phase,
since they can be combined with any data modeling approach. In this paper,
we focus on the filter approach.

1.1 Ranking methods and one-dimensional discretization

Univariate filter methods, also called ranking methods, select informative vari-
ables from a large set of candidate variables by ranking them individually ac-
cording to a specified criterion, and then choosing the set of “best” ones for
classification purposes, e.g., those where the criterion exceeds a given thresh-
old. The simplest way to determine this threshold is to keep as many variables
as the classification technique (often constrained by scalability issues) can han-
dle. Another classical approach is to estimate the parameters of the classifier
with several subsets of variables of increasing size. The best subset is chosen
according to a trade-off between the accuracy of the classifier and the size of
the subset.

The most commonly used ranking methods are based on statistical tests
(Saporta, 1990) that consider the correlation between an input variable and
the classificatory output variable, such as the chi-square test for categorical
input variables, or Student or Fisher-Snedecor tests for numerical input vari-
ables. These statistical tests are easy to apply, but they suffer from serious
limitations. They are restricted to a strong dichotomy between dependent and
independent variables, which does not provide a reliable ranking of the input
variables. They are also subject to strong constraints (minimum expected fre-
quency in each cell of the contingency table for categorical variable, Gaussian
distribution for numerical variables). Many alternative measures of associa-
tions between two variables have been studied in the context of decision trees
(Kass, 1980; Breiman et al., 1984; Quinlan, 1993; Zighed and Rakotomalala,
2000). These criteria are based on a partition of the domain of the input
variable and the consideration of the dependence between the corresponding
discretized input variable and the output variable. Supervised discretization
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methods split the numerical domain into a set of intervals and supervised
grouping methods partition the input categories into groups. Fine grained par-
titions allow an accurate discrimination of the output classes, whereas coarse
grained partitions tend to be more reliable.

Many discretization criteria have been studied in the literature. Error based
criteria (Holte, 1993; Maass, 1994; Kurgan and Cios, 2004) aim at minimizing
the classification error and need a user or internal parameter to constrain the
number of intervals. They focus only on the most represented output class in
each interval and ignore the distribution of the output classes, which limits
their classification performance (Kohavi and Sahami, 1996). Chi-square based
criteria have been exploited in a top-down (Bertier and Bouroche, 1981) or
bottom-up (Kerber, 1992) discretization algorithm to produce multi-interval
discretizations from elementary binary split or merge decisions. In (Boullé,
2004), the confidence level related to the chi-square statistics is directly ex-
ploited to provide a multi-interval discretization criterion. These criteria suffer
from limitations of the statistical test procedure, e.g. the minimum frequency
per interval (Cochran, 1954; Connor-Linton, 2003). Entropy based criteria
consider the distribution of the output classes. In (Quinlan, 1986, 1993), the
method is confined to binary discretization. To extend the approach to multi-
interval discretization, the BalancedGain method (Kononenko et al., 1984)
penalizes the entropy by the number of intervals, while the Fusinter method
(Zighed et al., 1998) penalizes intervals with small frequencies. A more princi-
pled approach based on the minimum description length principle (Rissanen,
1978) is applied in the MDLPC (Minimum Description Length Principal Cut)
method (Fayyad and Irani, 1992). In the case of a binary discretization, to
decide whether to split an interval, or not, the MDLPC criterion encodes the
description length of the model (cut or not cut) plus the description length of
the data given the model. When the number of intervals of the discretization
is a free parameter, the trade-off between information and robustness is an
issue. In the MODL (Minimum Optimized Description Length) approach, su-
pervised discretization (Boullé, 2006) (or grouping (Boullé, 2005)) is treated as
a nonparametric model of conditional probability of the output classificatory
variable given an input variable. The best partition is defined and constructed
by using a Bayesian model selection approach, and the posterior probability
of this best partition provides a measure of association that is both accurate
and reliable.

1.2 Limits of ranking methods

Ranking methods suffer from their univariate limitation, being unable to re-
veal interactions between input variables. For example, they are not able to
detect if one of two variables is redundant and insofar only one of them should
be used for classification purposes. On the other hand, input variables might
be uninformative when considered alone and strongly informative when con-
sidered simultaneously. These two cases are illustrated for a two-class problem
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in Fig. 1, using two-dimensional scatterplots where the points are drawn in
different sizes according to their class membership. The left diagram shows the
case of two redundant variables. The right diagram corresponds to an XOR
pattern: the distribution of each input variable taken alone is a mixture of the
two-class specific distribution within the classes, whereas a joint consideration
of the two variables allows a perfect discrimination of the output classes.
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Fig. 1 Multiple scatterplots for two input variables X1 and X2, and two output classes
(small and large circles). The left diagram shows the case of two redundant variables and
the right diagram the case of two jointly informative variables

In the case of two numerical input variables, multiple scatterplots are a
popular visualization technique to detect interactions between the input and
output variables. Scatterplot matrices (Carr et al., 1987) extend this technique
to sets of more than two input variables and allow to show all pairwise interac-
tions between the variables. These methods are widely used in exploratory data
analysis, but they do not provide a measure of the joint information contained
in the variable pairs. Furthermore, these methods do not apply in the case of
large numbers of variables: 100 input variables lead to 4950 = 100 ∗ 99/2 scat-
terplots, which cannot be managed by the data analyst. An automatic method
for estimating interactions between variables is needed due to the increasing
number of variables in datasets.

1.3 Our contribution

Our goal is to provide an efficient method to discretize in an optimum way
pairs of input variables in the context of data preparation for supervised classi-
fication. In this paper, we extend the MODL approach to the bivariate case for
any pair of input variables, numerical, categorical or mixed types. Each input
variable is partitioned, into intervals in the numerical case and into groups of
categories in the categorical case. This joint partitioning defines a distribution
of the instances in a bi-dimensional input data grid. The correlation between
the cells of this data grid and the output classes allows to quantify the joint
classificatory information. The trade-off between accuracy and robustness is es-
tablished using a Bayesian model selection approach. This provides a criterion
for any simultaneous partitioning of the input variables. Several optimization
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heuristics, including pre-optimization and post-optimization are proposed to
search the best possible simultaneous partitioning in a super-linear computa-
tion time.

Our method combines several interesting properties. It is able to man-
age both numerical and categorical input variables. It is nonparametric and
non asymptotic. It is regularized in order to tackle the sparseness problem
and optimally balance between the accuracy and the robustness of the dis-
cretization. The optimization process is computationally efficient and results
in super-linear computation time. Finally, it also provides a filter criterion for
the ranking of pairs of variables and it builds easily understandable models.

The paper is organized as follows. Section 2 summarizes the MODL method
in the univariate case. Section 3 introduces the extension of the approach to
the bivariate case and presents the resulting criterion. Section 4 summarizes
the optimization algorithms, which are detailed in (Boullé, 2008). Section 5
demonstrates the benefits of the approach on real datasets, both for the data
preparation and data modeling phases of data mining. Finally, Section 6 gives
a summary.

1.4 Related work

Many criteria such as Pearson’s chi-square, Tschuprow’s t or Cramer’s v have
been studied in the literature (Olszak and Ritschard, 1995; Ritschard and
Nicoloyannis, 2000) to measure the association between variables. It is note-
worthy that these association measures deal with two variables of a cross-table,
while our approach considers the association between a pair of input variables
and one output variable, which involves three variables.

Multivariate discretization or similar techniques have already been pro-
posed in various contexts. For example, the joint partitioning of the lines and
rows of contingency table has been studied in the general case (Nadif and Go-
vaert, 2005) for data exploration, or in the case of decision trees for the joint
partitioning of one input variable and the output variable (Zighed et al., 2005).
Multivariate discretization has also been developed in the case of association
rule mining (Bay, 2001), learning the structure of Bayesian network (Steck and
Jaakkola, 2004) or for decision rule induction (Kwedlo and Kretowski, 1999).

The main differences with these approaches are the choice of our family
of models, our Bayesian approach for model selection and our optimization
algorithm with super-linear computation time.

2 The MODL univariate supervised partitioning methods

This section summarizes the MODL approach for discretization (Boullé, 2006)
and grouping (Boullé, 2005). Extensive comparative experiments have demon-
strated that the univariate MODL preprocessing methods significantly outper-
forms alternative state of the art methods. The approach is quickly presented
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in this section, and applied and extended to the bivariate case with extensive
explanations in Section 3.

2.1 The MODL discretization method for continuous variables

Let us consider a classification problem with one single numerical input vari-
able X, a categorical output variable Y with J classes and D = {(xn, yn); 1 ≤
n ≤ N} a data sample of (X, Y ) of size N .

The objective of supervised discretization is to induce a list of intervals
which splits the numerical domain of X, while keeping the classificatory infor-
mation relative to the output variable. A compromise must be found between
accuracy (sufficient number of intervals to precisely estimate the conditional
distribution of the output variable) and robustness (sufficient sample size in
every interval to ensure generalization). For example, we present on the left of
Fig. 2 the number of instances of each output class of the Iris dataset (Blake
and Merz, 1996) w.r.t. the sepal width variable. The problem is to find the par-
tition of the numerical domain of sepal length into intervals which maintains
optimally the classificatory information about the three Iris classes.
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Fig. 2 MODL discretization of the Sepal Width variable for the classification of the Iris
dataset in 3 classes Versicolor, Virginica and Setosa

In the MODL approach (Boullé, 2006), the discretization is turned into
a model selection problem. Instead of defining the intervals by their bound-
aries in the numerical domain of X, they are defined by their frequencies,
which makes the approach invariant w.r.t. any monotone transformation of
the input variable and robust w.r.t. atypical values. The parameters of a dis-
cretization model M are the number of intervals I, the frequencies of the in-
tervals {Ni.}1≤i≤I and the frequencies of the output classes {Nij}1≤i≤I,1≤J≤J

in each interval. A prior distribution is proposed on this model space. This
prior exploits the hierarchy of the parameters: the number of intervals is first
chosen, then the frequencies of the intervals and finally the output frequen-
cies. The choice is uniform at each stage of the hierarchy. Finally, we assume
that the parameters of the multinomial distributions of the output classes in
each interval are independent from each other. A Bayesian approach is ap-
plied to select the best discretization model, which is found by maximizing
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the probability p(M |D) of the model given the data. Using the Bayes for-
mula P (M,D) = P (M)P (D|M) = P (D)P (M |D) and since the probability
p(D) is the same for all discretization models, this is equivalent to maximizing
p(M)p(D|M). Taking the negative log of the probabilities, we can obtain the
following expression.

log N + log
(

N + I − 1
I − 1

)
+

I∑
i=1

log
(

Ni. + J − 1
J − 1

)
+

I∑
i=1

log
Ni.!

Ni1!Ni2! . . . NiJ !
(1)

The first term of the criterion stands for the choice of the number of in-
tervals and the second term for the choice of the frequencies of the intervals.
The third term corresponds to the choice of the parameters of the multinomial
distributions of the output classes in each interval and the last term represents
the conditional likelihood of the data given the model. Therefore “complex”
models with large numbers of intervals are penalized.

Once the optimality of the criterion is established, the problem is to design
a search algorithm in order to find a discretization model that minimizes the
criterion. In (Boullé, 2006), a standard greedy bottom-up heuristic is used to
find a good discretization. In order to further improve the quality of the solu-
tion, the MODL algorithm performs post-optimizations based on hill-climbing
search in the neighborhood of a discretization. The neighbors of a discretiza-
tion are defined by combinations of interval splits and interval merges. Overall,
the time complexity of the algorithm is O(JN log N).

The MODL discretization method for classification provides the most prob-
able discretization given the data sample. Extensive comparative experiments
report high quality performance. In the Iris example, the three intervals of the
MODL discretization are shown on the right of Fig. 2. The contingency table
on the right gives us comprehensible rules such as ”for a sepal width less than
2.95, the probability of occurrence of the Versicolor class is 34/57 = 0.60”.

2.2 The MODL grouping method for categorical variables

Let us consider a classification problem with one single categorical input vari-
able X with V categories, a categorical output variable Y with J classes and
D = {(xn, yn); 1 ≤ n ≤ N} a data sample of (X, Y ) of size N .

Categorical input variables are analyzed in a way similar to that of numer-
ical variables, owing to a partitioning model of the input categories. In the
numerical case, the input values are constrained to be adjacent and the only
considered partitions are the partitions into intervals. In the categorical case,
there are no such constraints between the categories and any partition into
groups of categories is possible1. For instance, Fig. 3 illustrates the grouping
of the categories of the Cap Color input variable of the Mushroom dataset

1 Categorical variables with ordered values (ordinal variables) are treated as numerical
variables on the basis of the rank of the values.
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(Blake and Merz, 1996) for the classification of mushrooms into two classes:
edible or poisonous. The input categories provide a fine grained estimation of
conditional probabilities of the two output classes. Grouping the input cate-
gories and estimating group-specific conditional probabilities leads to differ-
ent trade-offs between accuracy and robustness of the estimation: fine grained
groupings are more accurate whereas coarse grained groupings are more robust.
The problem is obtain a reduced number of groups of categories, while keeping
as much classificatory information as possible. Producing a good grouping is
harder with large numbers of input categories since the risk of overfitting the
data increases. In the extreme situation where the number of input categories
is the same as the number of instances, overfitting is obviously so important
that efficient grouping methods should produce one single group, leading to
the elimination of the variable.

Category edible poisonous Frequency
BROWN 55.2% 44.8% 1610
GRAY 61.2% 38.8% 1458
RED 40.2% 59.8% 1066
YELLOW 38.4% 61.6% 743
WHITE 69.9% 30.1% 711
BUFF 30.3% 69.7% 122
PINK 39.6% 60.4% 101
CINNAMON 71.0% 29.0% 31
GREEN 100.0% 0.0% 13
PURPLE 100.0% 0.0% 10
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Fig. 3 MODL grouping of the categories of the Cap Color input variable for the classifica-
tion of the Mushroom dataset in two classes edible and poisonous

The parameters of a grouping model M are the number of groups I, the
partition of the V input categories into I groups and the frequencies of the
output classes {Nij}1≤i≤I,1≤J≤J in each group. The frequencies of the groups
{Ni.}1≤i≤I are derived from the definition of the partition and from the input
data. The Bayesian model selection approach is applied like in the discretiza-
tion case and allows to obtain the expression given in formula (2). This formula
has a similar structure as that of formula (1). The two first terms correspond
to the prior distribution of the partitions of the input categories, into groups
in formula (2) and into intervals in formula (1). The two last terms are the
same in both formula.

log V + log B (V, I) +
I∑

i=1

log
(

Ni. + J − 1
J − 1

)
+

I∑
i=1

log
Ni.!

Ni1!Ni2! . . . NiJ !
(2)

B (V, I) is the number of divisions of the V categories into I groups (with
eventually empty groups). When I = V , B (V, I) is the Bell number. In the
general case, B (V, I) can be written as B(V, I) =

∑I
i=1 S(i, V ), where S(i, V )

is the Stirling number of the second kind (Abramowitz and Stegun, 1970),
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which stands for the number of ways of partitioning a set of V elements into
i nonempty sets.

In (Boullé, 2005), a standard greedy bottom-up heuristic is proposed to find
a good grouping of the input categories. Several pre-optimization and post-
optimization steps are incorporated, in order to both ensure an algorithmic
time complexity of O(JN log(N)) and to obtain accurate groupings.

3 Extension to supervised bivariate discretization

In this section, we extend the MODL methods to the supervised discretization
of pairs of input variables. We first introduce the approach using an illustrative
example and then present the bivariate criterion in the case of two numerical
variables. We generalize the criterion to any case of pairs of input variables and
finally introduce the compression gain, a normalized version of the criteria.

We now consider X = (X1, X2) a pair of input variables, Y a categorical
output variable with J classes and D = {(xn, yn); 1 ≤ n ≤ N} a data sample
of (X, Y ) of size N .

3.1 Interest of the joint partitioning of two input variables

Fig. 4 draws the multiple scatter plot (per output class) of the input variables
V1 and V7 of the Wine dataset (Blake and Merz, 1996). This diagram allows
to visualize the conditional probability of the output classes (Class 1, Class 2,
Class 3) given the pair of input variables. The V1 variable taken alone cannot
separate Class 1 from Class 3 for input values greater than 13. Similarly, the
V7 variable is a mixture of Class 1 and Class 2 for input values greater than 2.
Taken jointly, the two input variables allow a better separation of the output
classes.
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Fig. 4 Multiple scatterplot (per output class) of the input variables V1 and V7 of the Wine
dataset. The optimal MODL supervised bivariate partition of the input variables is drawn
on the multiple scatterplot, and the triplet of output class frequencies per data grid cell is
reported in the right table
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Extending the univariate case, we partition the Cartesian product of the
two input variables V1 and V7 by considering the empirical distribution of the
observed input data pairs and by quantifying the relationship between these
pairs and the classificatory output variable. Each input variable is partitioned
into a set of parts (intervals in the numerical case and groups of categories in
the categorical case). The Cartesian product of the univariate input partitions
defines a data grid, which partitions the instances into a set of data cells.
Each data cell is defined by a pair of parts. The connection between the input
variables and the output variable is estimated owing to the distribution of
the output classes in each cell of the data grid. It is noteworthy that the
considered data grid partition, which is a direct product of the two univariate
input partitions, can be factorized on the input variables.

For instance in Fig. 4, the V1 variable is discretized into 2 intervals (one
boundary 12.78) and the V7 variable into 3 intervals (two boundaries 1.235
and 2.18). The instances of the dataset are distributed in the resulting bidi-
mensional data grid. In each cell of the grid, the distribution of the output
classes can be estimated by counting. For example, the right table in Fig. 4
shows that the cell defined by the intervals ]12.78,+∞[ on V1 and ]2.18,+∞[
on V7 contains 63 instances. These 63 instances are distributed on 59 instances
for Class 1 and 4 instances for Class 3.

Problem of model selection.Coarse grained data grids tend to be reliable,
whereas fine grained data grids allow a better separation of the output classes.
Data grid models are very expressive and selecting the best model is an issue:

– What is the correct number of intervals for each input variable?
– How to chose the frequency of each interval?
– How to characterize the lack of discriminant information?

Moreover, in the context of bivariate preprocessing for data preparation, the
following questions arise:

– How to compare two data grid models for a given pair of input variables?
– How to compare the discriminant information for different pairs of input

variables?

We will answer to these questions at the end of Section 3.4.

3.2 Discretization of pairs of numerical variables

X = (X1, X2) is a pair of numerical input variables and Y a categorical output
variable. We are looking for a model of the conditional probability P (Y |X) of
Y given X.

The choices 1 and 2 are the basis of the MODL approach.

Choice 1 Choice of the ranks.
We require that a good estimation of the conditional probability P (Y |X) should
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be invariant w.r.t. any monotonous transformation of the input variables and
robust w.r.t. atypical values (outliers). Given this requirement, we choose to
exploit the ranks of the input values in the data sample rather than the values
themselves. Our objective is then to describe the distribution of Y given the
rank of X1 and X2, instead of given the value of X1 and X2.

Choice 2 Choice of the model precision.
Given that we have a finite data sample of size N , it does not look realistic
to approximate the true conditional probability with a precision better than
1/N . We thus confine the domain of the model parameters to a finite number
of frequencies (rather that continuous distributions in [0, 1]), on the basis on
instance counts in the data sample.

Although a precision of 1/N might look unnecessarily small, a more clas-
sical precision of 1/

√
(N) (like in the variance of the binomial distribution)

is too coarse to detect fine grain patterns. This choice is justified by theo-
retical and empirical evidences in (Boullé, 2006), where intervals with very
few instances are reliably constructed by the MODL univariate discretization
method.

In Definition 1, these modeling choices are exploited to define a family of
bivariate partitioning models called data grid models, where the conditional
probability P (Y |X) is assumed to be constant in each cell of the data grid.

Definition 1 A data grid model is a bivariate partitioning model defined by
a partition of each input variable into a set of intervals and by a multinomial
distribution of the output classes in each cell of the data grid resulting from
the Cartesian product of the univariate partitions.

Notations.
– N : number of instances,
– J : number of output classes,
– I1, I2: number of intervals for each input variable,
– Ni1..: number of instances in the interval i1 of variable X1,
– N.i2.: number of instances in the interval i2 of variable X2,
– Ni1i2.: number of instances in the input data cell (i1, i2),
– Ni1i2j : number of instances of output class j in the input data cell (i1, i2).

A data grid model M describes the distribution of the output classes given
a partition of the Cartesian product of the input variables. It is completely
defined by the numbers of intervals I1 and I2, the frequencies of the intervals
{Ni1..} and {N.i2.} and the distribution of the output classes {Ni1i2j} in each
cell (i1, i2) of the data grid. It is noteworthy that the numbers of instances per
cell {Ni1i2.} do not belong to the parameters of the data grid models: they are
derived from the definition of the two univariate input partitions and from the
data sample D.

The available data D = {(xn, yn); 1 ≤ n ≤ N} consists of input data
DX = {xn; 1 ≤ n ≤ N} and output data DY = {yn; 1 ≤ n ≤ N}.
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Any input data is used to define the family of models introduced in Defi-
nition 1. The boundaries of the univariate partitions are calculated from the
input values and the frequencies of the input data cells are calculated from the
data sample and from the definition of the univariate partitions. In that sense,
the data grid models are data dependent. What is described in the model is
the association between the input variables and the output variable.

The objective is now to select the best model M on the basis on the avail-
able data sample D. Whereas the input data only is used to define the family of
models, the output data is used to select the best model. We apply a Bayesian
approach (Robert, 1997; Bernardo and Smith, 2000) to select the maximum
a posteriori (MAP) model. Choosing the MAP estimator is justified in the
context of data preparation, since an objective function is not always available
at this stage of data analysis.

Selecting the MAP model, we have to maximize

P (M |D) =
P (M)P (D|M)

P (D)
.

Since the probability P (D) is constant when varying the model, this is
equivalent to maximizing P (M)P (D|M). Exploiting the structure of the pa-
rameters of a data grid model M and assuming that the parameters of the
discretizations of the two input variables are a priori independent, we obtain

P (M)P (D|M) =P (I1)P
(
{Ni1..}|I1

)
P (I2)P

(
{N.i2.}|I2

)
P

(
{Ni1i2j}|I1, I2, {Ni1..}, {N.i2.}

)
P (D|M).

We now assume that the parameters of the multinomial distributions of
the output classes are independent for each cell of data grid. The interest of
this assumption is threefold: it improves understandability, owing to a focus
on models with discriminating behavior per data grid cell, it provides an ana-
lytic criterion for the posterior probability of data grid models and it permits
the development of efficient optimization heuristics (see Section 4). It is note-
worthy that the assumption of independence per cell is involved by the usual
assumption of independently and identically distributed data (i.i.d. assump-
tion).

Denoting Di1i2 the subset of D belonging to the data cell (i1, i2), we obtain

P (M)P (D|M) =P (I1)P
(
{Ni1..}|I1

)
P (I2)P

(
{N.i2.}|I2

)
I1∏

i1=1

I2∏
i2=1

P
(
{Ni1i2j}|I1, I2, {Ni1..}, {N.i2.}

)
I1∏

i1=1

I2∏
i1=2

P (Di1i2 |M).

(3)
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In order to compute the criterion, we introduce in Definition 2 a prior dis-
tribution on the parameters of the data grid models. This prior makes explicit
the independence assumptions, exploits the hierarchy of the parameters and
is uniform at each stage of this hierarchy.

Definition 2 The hierarchical prior of the parameters of data grid models is
defined as follows:
– the numbers of input intervals are independent from each other, and uni-

formly distributed between 1 and N ,
– for each input variable and for a given number of intervals, every partition

into intervals is equiprobable,
– for each cell of the data grid, all the parameters of the multinomial distri-

bution of the output classes are equiprobable,
– the parameters of the multinomial distributions of the output classes in

each cell are independent from each other.

In the Bayesian approach, the choice of the prior is either subjective (Gold-
stein, 2006), where the choice comes from the prior knowledge of the data
analyst, or objective (Berger, 2006), where the aim is to be as uninformative
as possible. In the context of data preparation, we have adopted an objective
approach inspired from the minimum description length (Rissanen, 1978).

Owing to the definition of the model space and its prior distribution, the
Bayes formula is applicable to exactly calculate the prior probabilities of the
models and the probability of the data given a model. Theorem 1 introduces
the MODL criterion.

Theorem 1 The negative log of the posterior probability of a data grid model
distributed according to the hierarchical prior is given by the following formula:

c(M) = log N + log
(

N + I1 − 1
I1 − 1

)
+ log N + log

(
N + I2 − 1

I2 − 1

)
+

I1∑
i1=1

I2∑
i2=1

log
(

Ni1i2. + J − 1
J − 1

)
+

I1∑
i1=1

I2∑
i2=1

log
Ni1i2.!

Ni1i21!Ni1i22! . . . Ni1i2J !

(4)

Proof The prior probability of a data grid model M is that of the model param-
eters {I1, I2, {Ni1..}1≤i1≤I1 , {N.i2.}1≤i2≤I2 , {Ni1i2j}1≤i1≤I1,1≤i2≤I2,1≤j≤J}.

Using the hierarchical prior and the independence assumptions, we have
decomposed the posterior probability of a model in formula (3).

Let us now inspect each elementary term of this formula, exploiting the
hypotheses introduced in Definition 2.

The first hypothesis of the prior distribution is that the number of intervals
is uniformly distributed between 1 et N for each input variable. Thus, we get

P (I1) = P (I2) =
1
N

.

The second hypothesis of the prior distribution is that all the division
of N instances into I1 (resp. I2) intervals are equiprobable. Computing the
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probability of one set of intervals turns into the combinatorial calculation of
the number of possible interval sets. Dividing N instances into I1 intervals is
equivalent to decomposing the natural number N as the sum of the frequencies
Ni1.. of the intervals. Using combinatorics, that number of choices of such any
{Ni1..}1≤i1≤I1 is equal to

(
N+I1−1

I1−1

)
. Since each set of discretization parameters

is equiprobable, we obtain

P
(
{Ni1..}|I1

)
=

1(
N+I1−1

I1−1

) and P
(
{N.i2.}|I2

)
=

1(
N+I2−1

I2−1

) .

Given two univariate discretizations of the input variables X1 and X2, the
frequency Ni1i2. of each cell of the data grid can be derived from the input data
sample. According to the third hypothesis of the prior distribution, in each
cell (i1, i2), all the parameters of the multinomial distributions of the Ni1i2.

instances of the cell on the J output classes are equiprobable. Calculating
the probability of one such set of multinomial parameters is a combinatorial
problem, which reduces to computing the number of ways of decomposing a
natural number Ni1i2. as a sum of J terms. Since each set of multinomial
parameters is equiprobable, we obtain

P
(
{Ni1i2j}|I1, I2, {Ni1..}, {N.i2.}

)
=

1(Ni1i2.+J−1
J−1

) .

We now have to calculate the conditional likelihood term in each data grid
cell, that is to compute the probability of observing the output classes of a cell
given the parameters of the multinomial distribution in this cell. The number
of ways of observing Ni1i2. instances distributed according to a multinomial
distribution is given by the multinomial coefficient Ni1i2.!

Ni1i21!Ni1i22!...Ni1i2J ! . The
conditional likelihood per cell is thus

1
Ni1i2.!

Ni1i21!Ni1i22!...Ni1i2J !

.

Finally, we replace each prior and conditional likelihood term in formula (3)
and get

P (M)P (D|M) =
1
N

1(
N+I1−1

I1−1

) 1
N

1(
N+I2−1

I2−1

) I1∏
i1=1

I2∏
i2=1

1(Ni1i2.+J−1
J−1

)
I1∏

i1=1

I2∏
i1=2

1
Ni1i2.!

Ni1i21!Ni1i22!...Ni1i2J !

.

Taking the negative log of the probabilities, the maximization problem
turns into the minimization of the claimed criterion. �
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As in the case of univariate discretization (formula (1)), the two first terms
in formula (4) correspond to the prior probability of the parameters (number
of intervals and choice of the interval frequencies) of the discretization of the
input variable X1. Similarly, the two following terms correspond to the prior
probability of the discretization of the input variable X2. The binomial term
in the first double sum represents the choice of the multinomial distribution of
the output classes in each cell. The multinomial coefficient in the last double
sum represents the conditional likelihood of the output classes given the data
grid model.

3.3 Partitioning of any pair of variable

In the case of two categorical input variables X1 and X2 with V1 and V2 cat-
egories, we apply the same approach. The X1 variable is partitioned into I1

groups of categories (instead of intervals in the numerical case) and the X2

variable into I2 groups. The distribution of the output classes is described in
each cell of the data grid resulting from the joint partitioning of the input
variables. Compared to the numerical case, the only change is the prior dis-
tribution of each univariate partition. The impact in formula (4) is to replace
the terms related to the prior distribution of the partition into intervals (two
first terms of the univariate discretization of formula (1)) by the corresponding
grouping terms (two first terms of the univariate grouping of formula (2)). We
then obtain the following expression in the case of a data grid model M with
two categorical input variables.

c(M) = log V1 + log B (V1, I1) + log V2 + log B (V2, I2)

+
I1∑

i1=1

I2∑
i2=1

log
(

Ni1i2. + J − 1
J − 1

)
+

I1∑
i1=1

I2∑
i2=1

log
Ni1i2.!

Ni1i21!Ni1i22! . . . Ni1i2J !
(5)

In the mixed case of one categorical input variable X1 with V1 categories
and one numerical input variable X2, the first variable is grouped and the
second one is discretized, and we obtain the following expression.

c(M) = log V1 + log B (V1, I1) + log N + log
(

N + I2 − 1
I2 − 1

)
+

I1∑
i1=1

I2∑
i2=1

log
(

Ni1i2. + J − 1
J − 1

)
+

I1∑
i1=1

I2∑
i2=1

log
Ni1i2.!

Ni1i21!Ni1i22! . . . Ni1i2J !

(6)

3.4 Compression gain

The criterion c(M) given in formulas (4), (5), (6) is related to the probabil-
ity that a data grid model M explains the output variable given the input
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variables. The criterion c(M) can also be interpreted as the ability of a data
grid model to encode the output classes given the input values, since negative
log of probabilities are no other than coding lengths (Shannon, 1948; Weaver
and Shannon, 1949). Let M∅ be the null model with only one part for each
univariate partition and one cell in the data grid. c(M∅) represents the coding
length of the output classes when no input information is used. In the case
of bivariate discretizations for example (criterion given in formula (4)), the
coding length of the null model M∅ reduces to

c(M∅) = 2 log N + log
(

N + J − 1
J − 1

)
+ log

N11.!
N111!N112! . . . N11J !

, (7)

which corresponds to posterior probability of a multinomial distribution of
the output classes, independently of the input variables. Using the Stirling’s
approximation log N ! = N(log N − 1) + O(log N), we get

c(M∅) = 2 log N + log
(

N + J − 1
J − 1

)
+ log

N11.!
N111!N112! . . . N11J !

,

= (N + J − 1)(log(N + J − 1)− 1)−N(log N − 1)

+N11.(log N11. − 1)−
J∑

j=1

N11j(log N11j − 1) + O(log N),

= −N11.

J∑
j=1

N11j

N11.
log

N11j

N11.
+ O(log N).

Thus c(M∅) is asymptotically equal to N times the Shannon’s entropy of
the output variable.

More complex data grid models may better compress the output classes,
since the entropy of the output classes is defined locally to each input cell.
Fine grained cells allow to identify input regions where the output entropy
is low (unbalanced mixture of the output classes), but too complex data grid
models with many cells are penalized with an increasing coding length of the
model parameters.

Compression gain. Given these probabilistic and compression interpretations,
we propose to use the criterion c(M) to build a relevance criterion for each pair
of input variables. The variable pairs can be sorted by decreasing probability
of explaining the output variable. In order to provide a normalized indicator,
we consider the following transformation of c(M):

g (M) = 1− c (M)
c (M∅)

. (8)

The compression gain g(M) holds its values between 0 and 1 for models
which are better than the null model (g(M) is negative otherwise). It has value
0 for the null model and is maximal when the best possible explanation of the
output classes conditionally to the pair of input variables is achieved.
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Answer to the problem of model selection. We can now provide an answer to
the questions raised at the end of Section 3.1. The numbers of intervals and the
frequencies of the intervals are determined by the minimization of the criterion
in formula (4). The lack of discriminant information corresponds to the null
model M∅ with only one interval for each univariate discretization and one cell
in the data grid, that is to a compression gain of 0.

To compare two data grid models M and M ′ for a given pair of input
variables, we can use the probabilistic interpretation of the criterion c(M) =
− log P (M)− log P (D|M). Thus, the ratio of the posterior probabilities of the
models is in direct relation to the difference of their criterion according to

P (M |D)
P (M ′|D)

= e−(c(M)−c(M ′)).

This formula can also be exploited to compare the predictive importance of
different pairs of input variables. Actually, the value of the criterion c(M?) for
the optimal data grid model can be interpreted as the probability that a pair
of input variables (X1, X2) explains the output variable Y on the basis of a
data grid model.

4 Optimization algorithms

The space of data grid models is so large that straightforward algorithms
almost surely fail to obtain good solutions within a practicable computational
time. Given that the MODL criterion is optimal, the design of sophisticated
optimization algorithms is both necessary and meaningful. Such algorithms
are described in (Boullé, 2008). They finely exploit the sparseness of the data
grids and the additivity of the MODL criterion, and allow a deep search in
the space of data grid models with O(N) memory complexity and O(N log N)
time complexity.

In this section, we give an overview of the data grid optimization algorithms
which are fully detailed in (Boullé, 2008). Let us first focus on the case of two
numerical input variables. The optimization of a data grid is a combinatorial
problem. For each input variable X1 and X2, there are 2N possible univari-
ate discretizations, which represents

(
2N

)2 possible bivariate discretizations.
An exhaustive search through the whole space of models is unrealistic. We de-
scribe in algorithm 1 a greedy bottom up merge heuristic (GBUM) to optimize
the data grids. The method starts with the maximum data grid MMax, which
corresponds to the finest possible univariate discretizations, with singleton in-
tervals. It considers all the merges between adjacent intervals, and performs
the best merge if the criterion decreases after the merge. The process is reit-
erated until no further merge decreases the criterion.

Each evaluation of the criterion for a data grid requires O(N2) time, since
the initial data grid model MMax contains N2 cells (see formula (4)). Each
step of the algorithm relies on O(N) evaluations of interval merges, and there
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Algorithm 1 Greedy Bottom Up Merge heuristic (GBUM)
Require: M {Initial data grid solution}
Ensure: M∗, c(M∗) ≤ c(M) {Final solution with improved cost}
1: M∗ ←M
2: while improved solution do
3: for all Merge m between two parts of variable X1 or X2 do
4: M ′ ←M∗ + m {Consider merge m on data grid M∗}
5: if c(M ′) < c(M∗) then
6: M∗ ←M ′

7: end if
8: end for
9: end while

are at most O(N) steps, since the data grid becomes equal to the null model
M∅ once all the possible merges have been performed. Overall, the time com-
plexity of the algorithm is O(N4) using a straightforward implementation of
the algorithm. However, the method can be optimized in O(N log N) time, as
demonstrated in (Boullé, 2008). The optimized algorithm mainly exploits the
sparseness of the data and the additivity of the criterion. Although a data grid
may contain O(N2) cells, at most N cells are non empty. Thus, each evaluation
of a data grid can be performed in O(N) owing to a specific algorithmic data
structure. The additivity of the criterion means that it can be decomposed on
the hierarchy of the components of the data grid: variables, parts and cells.
Using this additivity property, all the merges between adjacent parts can be
evaluated in O(N) time. Furthermore, when the best merge is performed, the
only impacted merges that need to be reevaluated for the next optimization
step are the merges that share instances with the best merge. Since the data
grid is sparse, the number of reevaluations of data grids is small on average. So-
phisticated algorithmic data structures and algorithms are necessary to exploit
these optimization principles and guarantee a time complexity of O(N log N).

The optimized version of the greedy heuristic is time efficient, but it may
fall into a local optimum. First, the greedy heuristic may stop too soon and
produce too many parts for each input variable. Second, the univariate parti-
tions into intervals may be sub-optimal since the merge decisions of the greedy
heuristic are never rejected. The post-optimization algorithms described in
(Boullé, 2006) in the case of univariate discretization are applied alternatively
to each input variable, for a frozen partition of the other input variable.

While post-optimizations may help to refine a good solution, the main
heuristic may be unable to obtain such an initial good solution. This prob-
lem is tackled using the variable neighborhood search (VNS) meta-heuristic
(Hansen and Mladenovic, 2001), which mainly benefits from multiple runs of
the algorithms with different random initial solutions.

In the case of categorical variables, the combinatorial problem is still worse
for large numbers of input categories V . The number of possible partitions of V

categories is equal to the Bell number B(V ) = 1
e

∑∞
k=1

kV

k! which is far greater
than the O(2N ) possible discretizations. Furthermore, the number of possi-
ble merges between adjacent parts is O(V 2) for categorical variables instead
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of O(N) for numerical variables. Specific pre-processing and post-processing
heuristics are necessary to efficiently handle the categorical input variables.
Mainly, the number of groups of categories is bounded by O(

√
N) in the algo-

rithms, and the initial and final groupings are locally improved by exchanges
of categories between groups. This allows to keep an O(N) memory complexity
and bound the time complexity by O(N

√
N log N) for categorical variables.

The optimization algorithms summarized above have been extensively eval-
uated in (Boullé, 2008), using a large variety of artificial datasets, where the
true data distribution is known. Overall, the method is both resilient to noise
and able to detect complex fine grained patterns. It is able to approximate
any conditional data distribution as close as requested, provided that there
are enough instances in the train data sample.

5 Experiments

This section evaluates the impact of the MODL bivariate partitioning method
on supervised classification. The benefits for data preparation have been in-
vestigated in (Boullé, 2008). Overall, the bivariate partitioning method is very
helpful in the data preparation step of data mining, with reliable ranking of
pairs of variables, detection of constructive interactions or of redundancies in
the representation space, and easily understandable visualizations of the joint
conditional information carried out by each pair of input variables. In this
section, we focus on the benefit for data modeling and evaluate the impact on
classification accuracy of the data grid models as a preprocessing step for the
naive Bayes classifier.

In order to evaluate the intrinsic performance of the MODL bivariate par-
titioning method, we introduce a new type of classifier called best bivariate
(B2). This classifier first searches the best pair of input variables, which max-
imizes the probability that its partitioning model explains the classificatory
output variable. In order to classify a test instance, the input cell related to
the instance is retrieved from the trained data grid and the most frequent out-
put class of this cell is used for prediction. In case where this cell was empty
in the trained data grid, the most frequent output class on the whole train
data sample is used for prediction. For sanity check, we also evaluate the best
univariate classifier (B1), which proceeds in the same way on the basis of the
MODL univariate analysis, and we present the results of the majority classi-
fier (M) which always predict the most frequent output class and serves as a
ground level reference.

In order to analyze the impact of the method on multivariate classifiers,
we use the naive Bayes classifier (Langley et al., 1992), on the basis of the uni-
variate preprocessing (NB1) and bivariate preprocessing (NB2). The bivariate
preprocessing is basically exploited in the experiments, since each bivariate
partitioning is simply managed as a constructed variable which expands the
data representation space. In a classification problem with p input variables,
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the NB1 classifier is based on p preprocessed input variables, while the NB2
classifier uses p(p−1)/2 additional constructed variables corresponding to the
preprocessed pairs of input variables. We also exploit the enhancements of
the naive Bayes classifier described in (Boullé, 2007) 2 , which incorporates
both variable selection and model averaging. This enhanced selective naive
Bayes classifier (SNB) is applied using the univariate preprocessing (SNB1)
and bivariate preprocessing(SNB2).

To summarize, the evaluated classifiers are:
– M: majority classifier,
– B1: best univariate classifier,
– B2: best bivariate classifier (based on the best preprocessed pair of input

variables),
– NB1: naive Bayes classifier,
– NB2: naive Bayes classifier (based on bivariate preprocessing),
– SNB1: selective naive Bayes classifier,
– SNB2: selective naive Bayes classifier (based on bivariate preprocessing).

The experiments are performed on 30 datasets from the UCI repository
(Blake and Merz, 1996) described in Table 1. They represent a large variety
of domains, numbers of instances, numbers of variables, types of variables
(numerical or categorical) and numbers of output classes. The test accuracy
is estimated using a stratified ten fold cross-validation. In order to determine
whether the performance are significantly different between the SNB2 method
and the alternative methods, the t-statistics of the difference of the results is
computed, at the 5% confidence level.

The results are summarized in Table 2 with the mean of the test accuracy
on all the datasets. The number of significant differences for the SNB2 classifier
is also reported, as well as the mean rank of each method. It is noteworthy
that the classifier based on one single variable (B1) is as accurate as the best
multivariate classifier evaluated in the benchmark (SNB2) in about one quarter
of the datasets (no significant differences in 7 datasets out of 30). The classifier
that selects the best pair of input variables (B2) obtains the best performance
in about one third of datasets (10 datasets out of 30).

In order to analyse the results with deeper details, Fig. 5 presents the
accuracy per dataset for the best univariate, best bivariate and naive Bayes
classifiers, relatively to the accuracy of the majority classifier. The best bivari-
ate classifier is always more accurate than the best univariate classifier, which
confirms the capacity of the bivariate discretization method to efficiently select
a predictive pair of variables. However, the best bivariate classifier is signifi-
cantly dominated by the naive Bayes classifier, which exploits the whole set
of variables.

Fig. 6 focuses on the naive Bayes multivariate classifier, and studies the
impact of exploiting or not the pairs of variables (NB2 and NB1) and that
of variable selection (SNB2 and SNB1). Using the pairs of variables enlarges

2 Tool available as a shareware at http://perso.rd.francetelecom.fr/boulle/.
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Table 1 UCI Datasets

N◦ Name Instances Numerical Categorical Classes Majority
variables variables accuracy

1 Abalone 4177 7 1 28 16.5
2 Adult 48842 7 8 2 76.1
3 Australian 690 6 8 2 55.5
4 Breast 699 10 0 2 65.5
5 Crx 690 6 9 2 55.5
6 German 1000 24 0 2 70.0
7 Glass 214 9 0 6 35.5
8 Heart 270 10 3 2 55.6
9 Hepatitis 155 6 13 2 79.4
10 HorseColic 368 7 20 2 63.0
11 Hypothyroid 3163 7 18 2 95.2
12 Ionosphere 351 34 0 2 64.1
13 Iris 150 4 0 3 33.3
14 LED 1000 7 0 10 11.4
15 LED17 10000 24 0 10 10.7
16 Letter 20000 16 0 26 04.1
17 Mushroom 8416 0 22 2 53.3
18 PenDigits 7494 16 0 10 10.4
19 Pima 768 8 0 2 65.1
20 Satimage 6435 36 0 6 23.8
21 Segmentation 2310 19 0 7 14.3
22 SickEuthyroid 3163 7 18 2 90.7
23 Sonar 208 60 0 2 53.4
24 Spam 4307 57 0 2 64.7
25 Thyroid 7200 21 0 3 92.6
26 TicTacToe 958 0 9 2 65.3
27 Vehicle 846 18 0 4 25.8
28 Waveform 5000 21 0 3 33.9
29 Wine 178 13 0 3 39.9
30 Yeast 1484 8 1 10 31.2

Table 2 Mean of the test accuracy, number of significant differences (win/draw/loss) for
the SNB2 classifier and mean rank of each classifier on 30 UCI datasets

SNB2 NB2 SNB1 NB1 B2 B1 M

Mean 83.9% 81.9% 82.4% 81.4% 73.4% 67.6% 48.5%
W/D/L 15/15/0 12/18/0 14/16/0 20/10/0 23/7/0
Mean rank 1.8 3.3 2.3 3.4 4.4 5.4



22

0%

10%

20%

30%

40%

50%

60%

70%

80%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

N°
 dataset

Accuracy - 
Accuracy(M)

NB1
B2
B1
M

Fig. 5 Difference of accuracy between each evaluated classifier and the majority classifier
(M), used as baseline. The evaluated classifiers are the best univariate (B1), best bivariate
(B2) and naive Bayes (NB1) classifiers

the representation space, which potentially allows to detect new classificatory
information. On the other hand, redundancies in the univariate representa-
tion are multiplied in the bivariate representation, which is detrimental to the
naive Bayes assumption. Fig. 6 shows that the two effects are observed on the
datasets of the experiments, with significant loss of accuracy for datasets 1, 2,
6, 9, 22, 26, and strong gain of accuracy for datasets 16, 18, 20, 21, 27. The
variable selection method (Boullé, 2007) used in the SNB1 classifier confirms
its beneficial impact on test accuracy, systematic but slight, compared to the
NB1 classifier. When efficient variable selection is used together with the pairs
of variables preprocessed using data grid models (SNB2), the gain in accuracy
becomes both important, with an average improvement of 2.5% (15% for the
Letter dataset), and highly significant, with 14 significant wins and 0 loss.
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Fig. 6 Difference of accuracy between each evaluated classifier and the naive Bayes classifier
(NB1), used as baseline. The evaluated classifiers are the naive Bayes classifier exploiting
all pairs of variables (NB2) and the selective naive Bayes classifiers based on univariate
preprocessing (SNB1) or bivariate preprocessing (SNB2)

6 Conclusion

The bivariate discretization method introduced in this paper is based on a par-
titioning model of each input variables, into intervals for numerical variables
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and into groups of categories for categorical variables. The Cartesian product
of the univariate partitions, called a data grid, allows to quantify the condi-
tional information relative to the output variable. The best data grid model
is defined by maximizing a Bayesian model selection criterion and searched in
the model space owing to efficient heuristics.

Our method is nonparametric both in the statistical and algorithmic sense :
it does not rely on any statistical hypothesis for the data distribution (like
Gaussianity for instance) and, as the criterion is regularized, there is no pa-
rameter to tune before optimizing it.

The benefit of data grid models for data preparation has been evaluated
in (Boullé, 2008). The results demonstrate the ability of the method to detect
constructive interactions or, on the opposite, redundancies between the input
variables, and highlight the visualization and data understanding capacities of
the data grids.

The impact of bivariate preprocessing on classification accuracy is evalu-
ated in this paper through extensive experiments on 30 UCI datasets. The
results show that the bivariate discretization method is able to select strongly
predictive pairs of variables. However, the average impact on classification ac-
curacy is not conclusive for the naive Bayes classifier when all the pairs of
variables are exploited. The problem is that the potential benefit of additional
classificatory information extracted from the pairs of variables is balanced
by the detrimental effect of increased redundancies in the presentation space.
When the naive Bayes classifier is equipped with an efficient variable selec-
tion method, the benefit of bivariate preprocessing becomes both systematic
and important: the classification accuracy always increases, with significant
differences in half of the cases.
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