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Abstract 
In supervised machine learning, the partitioning of the values (also called grouping) of a 
categorical attribute aims at constructing a new synthetic attribute which keeps the information of 
the initial attribute and reduces the number of its values. In this paper, we propose a new grouping 
method MODL1 founded on a Bayesian approach. The method relies on a model space of 
grouping models and on a prior distribution defined on this model space. This results in an 
evaluation criterion of grouping, which is minimal for the most probable grouping given the data, 
i.e. the Bayes optimal grouping. We propose new super-linear optimization heuristics that yields 
near-optimal groupings. Extensive comparative experiments demonstrate that the MODL grouping 
method builds high quality groupings in terms of predictive quality, robustness and small number 
of groups. 
Keywords: data preparation, grouping, Bayesianism, model selection, classification, naïve Bayes 

1 Introduction 
Supervized learning consists of predicting the value of a class attribute from a set of explanatory 
attributes. Many induction algorithms rely on discrete attributes and need to discretize continuous 
attributes or to group the values of categorical attributes when they are too numerous. While the 
discretization problem has been studied extensively in the past, the grouping problem has not 
been explored so deeply in the literature. The grouping problem consists in partitioning the set of 
values of a categorical attribute into a finite number of groups. For example, most decision trees 
exploit a grouping method to handle categorical attributes, in order to increase the number of 
instances in each node of the tree (Zighed and Rakotomalala, 2000). Neural nets are based on 
continuous attributes and often use a 1-to-N binary encoding to preprocess categorical attributes. 
When the categories are too numerous, this encoding scheme might be replaced by a grouping 
method. This problem arises in many other classification algorithms, such as Bayesian networks 
or logistic regression. Moreover, the grouping is a general-purpose method that is intrinsically 
useful in the data preparation step of the data mining process (Pyle, 1999). 

The grouping methods can be clustered according to the search strategy of the best partition 
and to the grouping criterion used to evaluate the partitions. The simplest algorithm tries to find 
the best bipartition with one category against all the others. A more interesting approach consists 
in searching a bipartition of all categories. The Sequential Forward Selection method derived 
from that of Cestnik et al. (1987) and evaluated by Berckman (1995) is a greedy algorithm that 
initializes a group with the best category (against the others), and iteratively adds new categories 
to this first group. When the class attribute has two values, Breiman et al. (1984) have proposed 
in CART an optimal method to group the categories into two groups for the Gini criterion. This 
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algorithm first sorts the categories according to the probability of the first class value, and then 
searches for the best split in this sorted list. This algorithm has a time complexity of O(I log(I)), 
where I is the number of categories. Based on the ideas presented in (Lechevallier, 1990; Fulton 
et al., 1995), this result can possibly be extended to find the optimal partition of the categories 
into K groups in the case of two class values, with the use of a dynamic programming algorithm 
of time complexity I2. In the general case of more than two class values, there is no algorithm to 
find the optimal grouping with K groups, apart from exhaustive search. However, Chou (1991) 
has proposed an approach based on K-means that allows finding a locally optimal partition of the 
categories into K groups. Decision tree algorithms often manage the grouping problem with a 
greedy heuristic based on a bottom-up classification of the categories. The algorithm starts with 
single category groups and then searches for the best merge between groups. The process is 
reiterated until no further merge can improve the grouping criterion. The CHAID algorithm 
(Kass, 1980) uses this greedy approach with a criterion close to ChiMerge (Kerber, 1991). The 
best merges are searched by minimizing the chi-square criterion applied locally to two categories: 
they are merged if they are statistically similar. The ID3 algorithm (Quinlan, 1986) uses the 
information gain criterion to evaluate categorical attributes, without any grouping. This criterion 
tends to favor attributes with numerous categories and Quinlan (1993) proposed in C4.5 to exploit 
the gain ratio criterion, by dividing the information gain by the entropy of the categories. The chi-
square criterion has also been applied globally on the whole set of categories, with a normalized 
version of the chi-square value (Ritschard et al., 2001) such as the Cramer's V or the Tschuprow's 
T, in order to compare two different-size partitions. 

In this paper, we present a new grouping method called MODL, which results from a similar 
approach as that of the MODL discretization method (Boullé, 2004c). This method is founded on 
a Bayesian approach to find the most probable grouping model given the data. We first define a 
general family of grouping models, and second propose a prior distribution on this model space. 
This leads to an evaluation criterion of groupings, whose minimization defines the optimal 
grouping. We use a greedy bottom-up algorithm to optimize this criterion. The method starts the 
grouping from the elementary single value groups. It evaluates all merges between groups, selects 
the best one according to the MODL criterion and iterates this process. As the grouping problem 
has been turned into a minimization problem, the method automatically stops merging groups as 
soon as the evaluation of the resulting grouping does not decrease anymore. Additional 
preprocessing and post-optimization steps are proposed in order to improve the solutions while 
keeping a super-linear optimization time. Extensive experiments show that the MODL method 
produces high quality groupings in terms of compactness, robustness and accuracy. 

The remainder of the paper is organized as follows. Section 2 describes the MODL method. 
Section 3 proceeds with an extensive experimental evaluation. 

2 The MODL Grouping Method 
In this section, we present the MODL approach which results in a Bayes optimal evaluation 
criterion of groupings and the greedy heuristic used to find a near-optimal grouping. 

2.1 Presentation 
In order to introduce the issues of grouping, we present in Figure 1 an example based on the 
Mushroom UCI data set (Blake and Merz, 1998). The class attribute has two values: EDIBLE and 
POISONOUS. The 10 categorical values of the explanatory attribute CapColor are sorted by 
decreasing frequency; the proportions of the class values are reported for each explanatory value. 
Grouping the categorical values does not make sense in the unsupervised context. However, 
taking the class attribute into account introduces a metric between the categorical values. For 
example, looking at the proportions of their class values, the YELLOW cap looks closer from the 
RED cap than from the WHITE cap. 
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Value EDIBLE POISONOUS Frequency

BROWN 55.2% 44.8% 1610
GRAY 61.2% 38.8% 1458

RED 40.2% 59.8% 1066
YELLOW 38.4% 61.6% 743

WHITE 69.9% 30.1% 711
BUFF 30.3% 69.7% 122
PINK 39.6% 60.4% 101

CINNAMON 71.0% 29.0% 31
GREEN 100.0% 0.0% 13

PURPLE 100.0% 0.0% 10

RED
YELLOW

BUFF
PINK

BROWN

GRAY

GREEN
PURPLE

WHITE
CINNAMON

G1 G2

G3

G4 G5

Figure 1. Example of a grouping of the categorical values of the attribute CapColor of data set 
Mushroom 

In data preparation for supervised learning, the problem of grouping is to produce the 
smallest possible number of groups with the slightest decay of information concerning the class 
values. In Figure 1, the values of CapColor are partitioned into 5 groups. The BROWN and 
GRAY caps are kept into 2 separate groups, since their relatively small difference of proportions 
of the class values is significant (both categorical values have important frequencies). On the 
opposite, the BUFF cap is merged with the RED, YELLOW and PINK caps: the frequency of the 
BUFF cap is not sufficient to make a significant difference with the other values of the group. 

The issue of a good grouping method is to find a good trade-off between information (as 
many groups as possible with discriminating proportions of class values) and reliability (the class 
information learnt on the train data should be a good estimation of the class information observed 
on the test data). Producing a good grouping is harder with large numbers of values since the risk 
of overfitting the data increases. In the limit situation where the number of values is the same as 
the number of instances, overfitting is obviously so important that efficient grouping methods 
should produce one single group, leading to the elimination of the attribute. In real applications, 
there are some domains that require grouping of the categorical attributes. In marketing 
applications for example, attributes such as Country, State, ZipCode, FirstName, ProductID 
usually hold many different values. Preprocessing these attributes is critical to produce efficient 
classifiers. 

2.2 Definition of a Grouping Model 
The objective of the grouping process is to induce a set of groups from the set of values of a 
categorical explanatory attribute. The data sample consists of a set of instances described by pairs 
of values: the explanatory value and the class value. The explanatory values are categorical: they 
can be distinguished from each other, but they cannot naturally be sorted. We propose in 
Definition 1 the following formal definition of a grouping model. Such a model is a pattern that 
describes both the partition of the categorical values into groups and the proportions of the class 
values in each group. 

 
Definition 1: A standard grouping model is defined by the following properties: 

1. the grouping model allows to describe a partition of the categorical values into 
groups, 

2. in each group, the distribution of the class values is defined by the frequencies of the 
class values in this group. 

Such a grouping model is called a SGM model. 
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Notations: 
n: number of instances 
J: number of classes 
I: number of categorical values 
ni: number of instances for value i 
nij: number of instances for value i and class j 
K: number of groups 
k(i): index of the group containing value i 
nk: number of instances for group k 
nkj: number of instances for group k and class j 
 
The purpose of a grouping model is to describe the distribution of the class attribute 

conditionally to the explanatory attribute. All the information concerning the explanatory 
attribute, such as the size of the data set, the number of explanatory values and their distribution 
might be used by a grouping model. The input data can be summarized knowing n, J, I and ni. 
The grouping model has to describe the partition of the explanatory values into groups and the 
distribution of the class values in each group. A SGM grouping model is completely defined by 
the parameters { ( ){ } { }

JjKkkjIi nikK
≤≤≤≤≤≤ 1,11 ,, }. 

For example, in Figure 1, the input data consists of n=5865 instances (size of the train data 
set used in the sample), I=10 categorical values and J=2 class values. The ni parameters 
represents the counts of the categorical values (for example, n1=1610 for the BROWN CapColor). 

The grouping model pictured in Figure 1 is defined by K=5 groups, the description of the 
partition of the 10 values into 5 groups (for example, k(1)=2 since the BROWN CapColor 
belongs to the G2 group) and the description of the distribution of the class values in each group. 
This last set of parameters ({nkj}1≤k≤5,1≤j≤2) corresponds to the counts in the contingency table of 
the grouped attribute and class attribute. 

2.3 Evaluation of a Grouping Model 
In the Bayesian approach, the best model is found by maximizing the probability P(Model/Data) 
of the model given the data. Using Bayes rule and since the probability P(Data) is constant under 
varying the model, this is equivalent to maximize P(Model)P(Data/Model). For a detailed 
presentation on Bayesian theory and its applications to model comparison and hypothesis testing, 
see for example (Bernardo and Smith, 1994; Kass and Raftery, 1995).  

Once a prior distribution of the models is fixed, the Bayesian approach allows to find the 
optimal model of the data, provided that the calculation of the probabilities P(Model) and 
P(Data/Model) is feasible. We define below a prior which is essentially a uniform prior at each 
stage of the hierarchy of the model parameters. We also introduce a strong hypothesis of 
independence of the distribution of the class values. This hypothesis is often assumed (at least 
implicitly) by many grouping methods that try to merge similar groups and separate groups with 
significantly different distributions of class values. This is the case for example with the CHAID 
grouping method (Kass, 1980), which merges two adjacent groups if their distributions of class 
values are statistically similar (using the chi-square test of independence).  

 
Definition 2: The following distribution prior on SGM models is called the three-stage prior: 

1. the number of groups K is uniformly distributed between 1 and I,  
2. for a given number of groups K, every division of the I categorical values into K 

groups is equiprobable,  
3. for a given group, every distribution of class values in the group is equiprobable,  
4. the distributions of the class values in each group are independent from each other.  
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Owing to the definition of the model space and its prior distribution, Bayes formula is 
applicable to exactly calculate the prior probabilities of the model and the probability of the data 
given the model. Theorem 1, proven in Appendix A, introduces a Bayes optimal evaluation 
criterion. 

 
Theorem 1: A SGM model distributed according to the three-stage prior is Bayes optimal for a 
given set of categorical values if the value of the following criterion is minimal on the set of all 
SGM models: 
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C  is the combinatorial operator. ( ),B I K  is the number of divisions of the I values into K 

groups (with eventually empty groups). When K=I, ( ),B I K  is the Bell number. In the general 
case, ( ),B I K  can be written as a sum of Stirling numbers of the second kind ( ),S I k : 
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( ),S I k  stands for the number of ways of partitioning a set of I elements into k nonempty sets. 
 
The first term of the criterion in equation 1 stands for the choice of the number of groups, the 

second term for the choice of the division of the values into groups and the third term for the 
choice of the class distribution in each group. The last term encodes the probability of the data 
given the model. 

There is a subtlety in the three-stage prior, where choosing a grouping with K groups 
incorporates the case of potentially empty groups. The partitions are thus constrained to have at 
most K groups instead of exactly K groups. The intuition behind the choice of this prior is that if 
K groups are chosen and if the categorical values are dropped in the groups independently from 
each other, empty groups are likely to appear. We present below two theorems (proven in 
Appendix A) that bring a more theoretical justification of the choice of the prior. These theorems 
are no longer true when the prior is to have partition containing exactly K groups. 

 
Definition 3: A categorical value is pure if it is associated with a single class. 

 
Theorem 2: In a Bayes optimal SGM model distributed according to the three-stage prior, two 
pure categorical values having the same class are necessary in the same group. 

 
This brings an intuitive validation of the MODL approach. Furthermore, grouping algorithms 

can exploit this property in a preprocessing step and considerably reduce their overall 
computational complexity. 

 
Theorem 3: In a SGM model distributed according to the three-stage prior and in the case of two 
classes, the Bayes optimal grouping model consists of a single group when each instance has a 
different categorical value. 

 
This provides another validation of the MODL approach. Building several groups in this case 

would reflect an over-fitting behavior. 
 

Conjecture 1: In a Bayes optimal SGM model distributed according to the three-stage prior and 
in the case of two classes, any categorical value whose class proportion is between the class 
proportions of two categorical values belonging to the same group necessary belongs to this 
group. 
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This conjecture has been proven for other grouping criterion such as Gini (Breiman, 1984) or 

Kolmogorov-Smirnov (Asseraf, 2000) and experimentally validated in extensive experiments for 
the MODL criterion. It will be considered as true in the following. The grouping algorithms, such 
as greedy bottom-up merge algorithms, can take benefit from this conjecture. Once the 
categorical values have been sorted by decreasing proportion of the class, the number of 
potentially interesting value merges is reduced to (I-1) instead of I(I-1)/2. 

2.4 Optimization of a Grouping Model 
Once the optimality of an evaluation criterion is established, the problem is to design a search 
algorithm in order to find a grouping model that minimizes the criterion. In this section, we 
present a greedy bottom-up merge heuristic enhanced with several preprocessing and post-
optimization algorithms whose purpose is to achieve a good trade-off between the time 
complexity of the search algorithm and the quality of the groupings. 

2.4.1 Greedy Bottom-Up Merge Heuristic 
In this section, we present a standard greedy bottom-up heuristic. The method starts with initial 
single value groups and then searches for the best merge between groups. This merge is 
performed if the MODL evaluation criterion of the grouping decreases after the merge and the 
process is reiterated until not further merge can decrease the criterion. 

The algorithm relies on the O(I) marginal counts, which require one O(n) scan of the data set. 
However, we express the complexity of the algorithm in terms of n (rather than in terms of I), 
since the number of categorical values can reach O(n) in the worst case. With a straightforward 
implementation of the algorithm, the method runs in O(n3) time (more precisely O(n+I3)). 
However, the method can be optimized in O(n2 log(n)) time owing to an algorithm similar to that 
presented in (Boullé, 2004a). The algorithm is mainly based on the additivity of the evaluation 
criterion. Once a grouping is evaluated, the value of a new grouping resulting from the merge 
between two adjacent groups can be evaluated in a single step, without scanning all the other 
groups. Minimizing the value of the groupings after the merges is the same as maximizing the 
related variation of value ∆value. These ∆values can be kept in memory and sorted in a 
maintained sorted list (such as an AVL binary search tree for example). After a merge is 
completed, the ∆values need to be updated only for the new group and its adjacent groups to 
prepare the next merge step. 

 
Optimized greedy bottom-up merge algorithm: 

• Initialization 
• Create an elementary group for each value: O(n) 
• Compute the value of this initial grouping: O(n) 
• Compute the ∆values related to all the possible merges of 2 values: O(n2) 
• Sort the possible merges: O(n2 log(n)) 

• Optimization of the grouping: repeat the following steps (at most n steps) 
• Search for the best possible merge: O(1) 
• Merge and continue if the best merge decreases the grouping value 

 Compute the ∆values of the remaining group merges adjacent to the 
best merge: O(n) 

 Update the sorted list of merges: O(n log(n)) 
 
In the case of two classes, the time complexity of the greedy algorithm can be optimized 

down to O(n log(n)) owing to conjecture 1. 
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2.4.2 Preprocessing 
In the general case, the computational complexity is not compatible with large real databases, 
when the categorical values becomes too numerous. In order to keep a super-linear time 
complexity, the initial categorical values can be preprocessed into a new set of values of 
cardinality nI ≤' . 

A first straightforward preprocessing step is to merge pure values having the same class. This 
step is compatible with the optimal solution (see Theorem 2). 

A second preprocessing step consists in building J groupings for each "one class against the 
others" sub-problems. This require O(J n log(n)) time. The subparts of the groups shared by all 
the J groupings can easily be identified and represent very good candidate subgroups of the 
global grouping problem. The number of these subparts is usually far below the number of initial 
categorical values and helps achieving a reduced sized set of preprocessed values. 

A third preprocessing step can be applied when the number of remaining preprocessed values 
is beyond n . The values can be sorted by decreasing frequencies and the exceeding infrequent 
values can be unconditionally grouped into J groups according to their majority class. This last 
step is mandatory to control the computational complexity of the algorithm. However, 
experiments show that this last step is rarely activated in practice. 

2.4.3 Post-Optimizations 
The greedy heuristic may fall in a local optimum, so that time efficient post-optimizations are 
potentially useful to improve the quality of the solution. Since the evaluation criterion is Bayes 
optimal, spending more computation time is meaningful. 

A first post-optimization step consists in forcing the merges between groups until a single 
terminal group is obtained and to keep the best encountered grouping. This helps escaping local 
optima and requires O(n log(n)) computation time. Furthermore, in the case of noisy attribute 
where the optimal grouping consists of a single group, this heuristic guarantees to find the 
optimal solution. 

A second post-optimization step consists in evaluating every move of a categorical value 
from one group to another. The best moves are performed as long as they improve the evaluation 
criterion. This process is similar to the K-means algorithm where each value is attracted by its 
closest group. It converges very quickly, although this cannot be proved theoretically. 

A third post-optimization step is a look-ahead optimization. The best merge between groups 
is simulated and post-optimized using the second step algorithm. The merge is performed in case 
of improvement. This algorithm looks similar to the initial greedy merge algorithm, except that it 
starts from a very good solution and incorporates an enhanced post-optimization. Thus, this 
additional post-optimization is usually triggered for only one or two extra merges. 

3 Experiments 
In our experimental study, we compare the MODL grouping method with other supervised 
grouping algorithms. In this section, we introduce the evaluation protocol, the alternative 
evaluated grouping methods and the evaluation results on artificial and real data sets. Finally, we 
present the impact of grouping as a preprocessing step to the Naïve Bayes classifier. 

3.1 Presentation 
In order to evaluate the intrinsic performance of the grouping methods and eliminate the bias of 
the choice of a specific induction algorithm, we use a protocol similar as (Boullé, 2004b), where 
each grouping method is considered as an elementary inductive method which predicts the 
distribution of the class values in each learned groups. 

The grouping problem is a bi-criteria problem that tries to compromise between the predictive 
quality and the number of groups. The optimal classifier is the Bayes classifier: in the case of an 
univariate classifier based on a single categorical attribute, the optimal grouping is to do nothing, 
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i.e. to build one group per categorical value. In the context of data preparation, the objective is to 
keep most of the class conditional information contained in the attribute while decreasing the 
number of values. In the experiments, we collect both the number of groups and the predictive 
quality of the grouping. The number of groups is easy to calculate. The quality of the estimation 
of the class conditional information hold by each group is more difficult to evaluate. 

We choose not to use the accuracy criterion because it focuses only on the majority class 
value and cannot differentiate correct predictions made with probability 1 from correct 
predictions made with probability slightly greater than 0.5. Furthermore, many applications, 
especially in the marketing field, rely on the scoring of the instances and need to evaluate the 
probability of each class value. In the case of categorical attributes, we have the unique 
opportunity of observing the class conditional distribution on the test data set: for each categorical 
value in the test data set, the observed distribution of the class values can be estimated by 
counting. The grouping methods allow to induce the class conditional distribution from the train 
data set: for each learnt group on the train data set, the learnt distribution of the class values can 
be estimated by counting. The objective of grouping is to minimize the distance between the 
learnt distribution and the observed distribution. This distance can be evaluated owing to a 
divergence measure, such as the Kullback-Leibler divergence, the chi-square divergence or the 
Hellinger coefficient. In our experiments, we choose to evaluate this distance using the Kullback-
Leibler divergence (Kullback, 1968). 

The MODL grouping methods exploits a space of class conditional distribution models (the 
SGM models) and searches the most probable model given the train data. It is noteworthy that no 
loss function is optimized in this approach: neither the classification accuracy is optimized nor the 
Kullback-Leibler divergence (which would require to divide the train data set into train data and 
validation data). The MODL method exploits all the available train data to build its grouping 
model. 

 
The evaluation conducted in the experiments focuses on the quality of the groupings (size and 

Kullback-Leibler divergence criterions) as a preprocessing method for data mining. It is 
interesting to examine whether optimizing the posterior probability of a grouping model (on the 
basis on the three-stage prior) leads to high-quality groupings. 

3.2 The Evaluation Protocol 
The predictive quality of the groupings is evaluated owing to the Kullback-Leibler divergence 
(Kullback, 1968) applied to compare the distribution of the class values estimated from the train 
data set with the distribution of the class values observed on the test data set.  

Let n' be the number of instances, n'i be the number of instances for value i and n'ij the 
number of instances for value i and class j on the test data set. 

For a given categorical value i, let pij be the probability of the jth class value estimated on the 
train data set (on the basis of the group containing the categorical value), and qij be the probability 
of the jth class value observed on the test data set (using directly the categorical value). The qij 
probabilities are estimated with the Laplace's estimator in order to deal with zero values. We get 
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In a first experiment, we compare the behavior of the evaluated grouping method on synthetic 

data sets, where the ideal grouping pattern is known in advance. In the second experiments, we 
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use real data sets to compare the grouping methods considered as univariate classifiers. In a third 
experiment, we use the same data sets to evaluate the results of Naïve Bayes classifiers using the 
grouping methods to preprocess the categorical attributes. In this last experiment, the results are 
evaluated using the classification accuracy both on train data sets and on test data sets. 

 
Data Set Continuous Categorical Size Class Majority 
 Attributes Attributes  Values Accuracy 
Adult 7 8 48842 2 76.07 
Australian 6 8 690 2 55.51 
Breast 10 0 699 2 65.52 
Crx 6 9 690 2 55.51 
Heart 10 3 270 2 55.56 
HorseColic 7 20 368 2 63.04 
Ionosphere 34 0 351 2 64.10 
Mushroom 0 22 8416 2 53.33 
TicTacToe 0 9 958 2 65.34 
Vehicle 18 0 846 4 25.77 
Waveform 40 0 5000 3 33.84 
Wine 13 0 178 3 39.89 

Table 1. Data sets 

We gathered 12 data sets from U.C. Irvine repository (Blake and Merz, 1998), each data set 
has at least a few tenths of instances for each class value and some categorical attributes with 
more than two values. In order to increase the number of categorical attributes candidate for 
grouping, the continuous attributes have been discretized in a preprocessing step with a 10 equal-
width unsupervised discretization. The 12 data sets comprising 230 attributes are described in 
Table 1; the last column corresponds to the accuracy of the majority class. 

The categorical attributes in these data sets hold less than 10 values on average (from an 
average 3 values in the TicTacToe attributes to about 20 values in the HorseColic attributes). In 
order to perform more discriminating experiments, we use a second collection of data sets 
containing all the cross-products of the attributes. In this "bivariate" benchmark, the 12 data sets 
contain 2614 categorical attributes holding 55 values on average. 

3.3 The Evaluated Methods 
The grouping methods studied in the comparison are: 

• MODL, the method described in this paper, 
• Khiops (Boulle, 2004b), 
• BIC (Ritschard, 2003), 
• CHAID (Kass, 1980), 
• Tschuprow (Ritschard et al., 2001),  
• Gain Ratio (Quinlan, 1993). 

 
All these methods are based on a greedy bottom-up algorithm that iteratively merges the 

categories into groups, and automatically determines the number of groups in the final partition of 
the categories. The MODL method is based on a Bayesian approach and incorporates 
preprocessing and post-optimization algorithms. The Khiops, CHAID, Tschuprow and BIC 
methods use the chi-square statistics in different manner. The Gain Ratio method is based on 
entropy. 

The CHAID method is the grouping method used in the CHAID decision tree classifier 
(Kass, 1980). It applies the chi-square criterion locally to two categorical values in the 
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contingency table, and iteratively merges the values as long as they are statistically similar. The 
significance level is set to 0.95 for the chi-square threshold. The Tschuprow method is based on a 
global evaluation of the contingency table, and uses the Tschuprow's T normalization of the chi-
square value to evaluate the partitions. The Khiops method also applies the chi-square criterion 
on the whole contingency table, but it evaluates the partition using the confidence level related to 
the chi-square criterion. Furthermore, the Khiops method provides a guaranteed resistance to 
noise: any categorical attribute independent from the class attribute is grouped in a single terminal 
group with a user defined probability. This probability is set to 0.95 in the experiments. The BIC 
method is based on the deviance G2 statistics, which is a chi-square statistics. It exploits a 
Bayesian information criterion (Schwarz, 1978) to select the best compromise model between fit 
and complexity. The Gain Ratio method is the methods used in the C4.5 decision tree classifier 
(Quinlan, 1993). The gain ratio criterion attempts to find a trade-off between the information on 
the class values (information gain) and the complexity of the partition (the split information) by 
dividing the two quantities. 

We have re-implemented these alternative grouping approaches in order to eliminate any 
variance resulting from different cross-validation splits. 

3.4 The Artificial Data Sets Experiments 
Using artificial data sets allows controlling the distribution of the explanatory values and of the 
class values. The evaluation of the groupings learned on train data sets can thus be optimal, 
without requiring any test data set. In the case of grouping, an artificial data set containing one 
categorical attribute and one class attribute is completely specified by the following parameters: 

I: number of categorical values, 
J: number of classes, 
pi, 1 i I≤ ≤ : probability distribution of the categorical values, 
pj/i, 1 j J≤ ≤ , 1 i I≤ ≤ : probability distribution of the class values conditionally to the 

categorical values. 

3.4.1 The Noise Pattern 
The purpose of this experiment is to compare the robustness of the grouping methods. The noise 
pattern data set consists of an explanatory categorical attribute independent from the class 
attribute. The explanatory attribute is uniformly distributed (pi=1/I) and the class attribute consists 
of two equidistributed class values (pj/i=1/2). We use randomly generated train samples of size 
1000 and perform the experiment 1000 times, for different numbers of categorical values. In the 
case of independence, the optimal number of groups is 1. In Figure 2, we report the mean of the 
number of unnecessary groups (K-1) and of the Kullback-Leibler divergence between the 
estimated class distribution and the true class distribution. 

The results demonstrate the effectiveness of the Kullback-Leibler divergence to evaluate the 
quality of a grouping. In the case of attribute independence, the classification accuracy is 
uniformly equal to 50% whatever the number of groups: it is useless as an evaluation criterion. 
The most comprehensible grouping consists of a single group whereas the worst one is to build 
one group per value. The Kullback-Leibler divergence is able to exploit this by a better evaluation 
of the true class distribution in the most frequent groups. Thus, building separate groups that 
could be merged leads to a poorer estimation of the class distribution. 

The CHAID method creates more and more groups when the number of categorical values 
increases. This translates by a quickly decreasing quality of estimation of the class distribution, as 
pictured in Figure 2. 

The BIC method performs better than the CHAID method when the number of categorical 
values is small. When this number of values increases, the BIC and CHAID methods perform 
similarly. 
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Figure 2. Mean of the number of unnecessary groups (K-1) and of the Kullback-Leibler 

divergence of the groupings of an explanatory attribute independent from the class 
attribute 

The GainRatio method is constrained to produce at least 2 groups. It overfits the train data as 
soon as the number of categorical values exceeds a few tens. 

The Tschuprow method is also constrained to produce at least 2 groups. It builds almost 
systematically exactly two groups. A closer look at the Tschuprow criterion shows that the 
criterion can reach its theoretical bound only when the contingency table is square, meaning that 
the number of groups is exactly equal to the number of class values. Additional experiments with 
different numbers of class values (not reported in this paper) confirm this bias. Although the 
number of groups is constant under varying the number of categorical values, the estimation of 
the class distribution worsens with higher number of values. This is explained since less frequent 
values lead to a less reliable estimation of the class probabilities. 

The Khiops method is designed to build one single group with probability 0.95, when the 
explanatory attribute and the class attribute are independent. This is confirmed by the experiment 
up to about 100 categorical values. Above this number of values, the Khiops method 
systematically builds one group for the reason that it unconditionally groups the least frequent 
values in a preprocessing step. The objective of this preprocessing step is to improve the 
reliability of the confidence level associated with the chi-square criterion, by constraining every 
cell of the contingency table to have an expected value of at least 5. 

The MODL method builds one single group almost always, and the proportion of multi-
groups partitions decreases sharply with the number of categorical values. The experiments have 
been performed 100000 times for the MODL method. Above 50 values, no grouping (out of 
100000) contains more than one group. 

3.4.2 The Mixture Pattern 
The objective of this experiment is to evaluate the sensibility of the grouping methods. The 
mixture pattern data set consists of an explanatory categorical attribute distributed according to 
several mixtures of class values. The explanatory attribute is uniformly distributed (pi=1/I) and 
the class attribute consists of four equidistributed class values (pj/i=1/4). We designed 8 artificial 
groups corresponding to 8 different mixtures of class values. In each group, one of the class 
values is the majority class (with probability 0.50 or 0.75) and the other three classes are 
equidistributed, as pictured in Figure 3. 

We use randomly generated train samples of size 10000 and perform the experiment 1000 
times, for different numbers of categorical values. Due to the quadratic complexity of the 
algorithms, the experiment was conducted up to 2000 categorical values, except for the MODL 
algorithm that has a super-linear complexity. In Figure 4, we report the mean of the number of 
groups and of the Kullback-Leibler divergence between the estimated class distribution and the 
true class distribution. 
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Figure 3. Class distribution in 8 artificial group and 4 class values; the categorical values are 

uniformly distributed on the 8 groups 

The CHAID method overfits the training data by creating too many groups, even more than 
in the case of independence since the number of class values is now 4. The BIC method manages 
to find the optimal number of groups when the number of categorical values is below 100. Above 
this threshold, it overfits the training data and exhibits a behavior similar to that of the CHAID 
method. The behavior of the GainRatio method is unexpected. For small numbers of categorical 
values, it builds a constant number of groups equal to the number of class values, and beyond one 
hundred values, the number of groups raises sharply. The Tschuprow method is so strongly biases 
that it always produces exactly 4 groups. The Khiops method benefits from its robustness and 
correctly identifies the 8 artificial groups as long as the frequencies of the categorical values are 
sufficient. Beyond about 400 values, the minimum frequency constraint of the Khiops algorithms 
become active and the number of groups falls down to 1. The MODL method almost always 
builds optimal groupings with the correct number of groups. When the number of categorical 
values becomes large (about 500, i.e. an average frequency of 40 per value), there is a transition 
in the behavior of the algorithm, that produces only 4 groups instead of 8. The frequency of the 
categorical values is no longer sufficient to discriminate 8 types of class distributions. When the 
number of class values increases again (beyond 2000, i.e. an average frequency of 5 per value), 
there is a second transition and the MODL method builds one single group. 
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Figure 4. Mean of the number of groups and of the Kullback-Leibler divergence of the groupings 

of an explanatory attribute distributed in 8 mixtures of class values 

To summarize, the noise and mixture pattern experiments are a convenient way to 
characterize each grouping methods with their bias, robustness, sensibility and limits. The 
experiments show the interest of using the Kullback-Leibler divergence to evaluate the quality of 
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the groupings. This criterion looks well suited to evaluate the groupings in real data sets, where 
the true class distribution is unknown. 

The CHAID method exhibits an overfitting behavior, which decays when the number of 
categorical values or class values increases. The BIC method finds the correct number of groups 
when the categorical values are not too numerous and then overfits the training data. The 
Tschuprow is strongly biased in favor of numbers of groups equal to numbers of classes. The 
GainRatio exhibits a varying biased and overfitting behavior according to the distribution of the 
train data. The Khiops method is robust but suffers from a lack of sensibility when the categorical 
values are too numerous, due to its minimum frequency constraint. 

 
The MODL method builds groupings that are optimum, the most probable groupings given 

the train data. It is the only evaluated method that retrieves the exact number of groups both in 
case of noise data and of informative data. 

3.5 The Real Data Sets Experiments 
The goal of this experiment is to evaluate the intrinsic performance of the grouping methods, 
without the bias of the choice of a specific induction algorithm. The grouping are performed on 
all the attributes of the UCI data sets presented in Table 1, using a stratified tenfold cross-
validation. As the purpose of the experiments is to evaluate the grouping methods according to 
the way they compromise between the quality and the size of the groupings, we also added three 
basic grouping methods for comparison reasons. The first method named NoGrouping builds one 
group per categorical value: it is the least biased method for estimating the distribution of the 
class values at the expense of the highest number of groups. The second method called 
ExhaustiveCHAID (SPSS, 2001) is a version of the CHAID method that merges similar pairs 
continuously until only a single pair remains. We added a similar method ExhaustiveMODL, 
which allows comparing the two methods when they are constrained to build the same number of 
groups. 

During the experiments, we collect the number of groups and the Kulback-Leibler divergence 
between the class distribution estimated on train data sets and the class distribution observed on 
test data sets. For each grouping method, this represents 2300 measures for the univariate analysis 
(230 attributes) and 26140 measures for the bivariate analysis (2614 pairs of attributes). All these 
results are summarized across the attributes of the data sets owing to means, in order to provide a 
gross estimation of the relative performances of the methods. We report the mean of the number 
of groups and of the Kullback-Leibler divergence for the univariate and bivariate analysis in 
Figure 5. For the Kullback-Leibler divergence, we use geometric means normalized by the result 
of the NoGrouping method in order to focus on the ratios of predictive performance between 
tested methods. The gray line highlights the Pareto curve of the results obtained by the grouping 
methods. 

As expected, the NoGrouping method obtains the best results in term of predictive quality, at 
the expense of the worst number of groups. However, in the univariate analysis, the Khiops, BIC, 
CHAID and MODL methods reach almost the same quality with far less groups. The Tschuprow 
method is hampered by its bias in favor of number of groups equal to the number of class values, 
so that its performance are not better that those of the constrained methods ExhaustiveCHAID 
and ExhaustiveMODL. The GainRatio method is dominated by the other methods. The bivariate 
analysis is much more selective. The results follow the same trend with sharper differences 
between the methods. The Khiops method underfits the data because of its minimum frequency 
constraint, while the CHAID method suffers from its lack of overfitting control by producing too 
many groups and degrading its predictive performance. Although its criterion incorporates a 
complexity penalty, the BIC method builds too many groups and overfits the data. 
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Figure 5. Mean of the number of groups and of the Kullback-Leibler divergence of the groupings 
performed on the UCI data sets, in univariate analysis (on the left) and bivariate analysis 
(on the right) 

 
The MODL method gets the lowest number of group without discarding the predictive 

quality. It manages to reduce the number of categorical values by one order of magnitude while 
keeping the best estimate of the class conditional probability. 

3.6 Impact of Groupings on the Naïve Bayes Classifier 
The aim of this experiment is to evaluate the impact of grouping methods on the Naïve Bayes 
classifier. The Naïve Bayes classifier (Langley et al., 1992) assigns the most probable class value 
given the explanatory attributes values, assuming conditional independence between the attributes 
for each class value. The Naïve Bayes classifier is a very simple technique that does not require 
any parameter setting, which removes the bias due to parameter tuning. It performs surprisingly 
well on many data sets (Dougherty et al., 1995; Hand and Yu, 2001) and is very robust. High 
quality grouping tend to increase the frequency in each group and to decrease the variance in the 
estimation of the conditional class density. It is interesting to examine whether this can benefit to 
classifiers, even to the Naïve Bayes classifier which is particularly unsophisticated. 

The evaluation of probabilities for numeric attributes owing to discretization has already been 
discussed in the literature (Dougherty et al., 1995; Hsu et al, 2003; Yang and Webb, 2003). 
Experiments have shown that even a simple Equal Width discretization with 10 bins brings 
superior performances compared to the assumption using the Gaussian distribution. On the 
opposite, the probabilities for categorical attribute are estimated using the Laplace's estimator 
directly on the categorical values, without any preprocessing such as grouping. It is interesting to 
study whether grouping could produce a more robust estimation of the class distributions and 
enhance the performance of the Naïve Bayes classifier. The experiment is performed on the 12 
data sets presented in Table 1, using the univariate (all categorical attributes) and bivariate (all 
pairwise interactions of categorical attributes) sets of data sets. A Student's test at the 5% 
confidence level is performed between the MODL grouping method and the other methods to 
determine whether the differences of performance are significant. According to (Dietterich, 
1998), the McNemar's test is more reliable, but it does not assess the effect of varying the training 
set. However, these statistical tests "must be viewed as approximate, heuristic tests, rather than as 
rigorously correct statistical methods" (Dietterich, 1998). Table 2 reports a summary of the test 
accuracy and robustness results, using the mean of the data set results, the average rank of each 
method and the number of significant wins and losses of the MODL method. 
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 Test accuracy Robustness (Test acc. / Train acc.) 
 Univariate data sets Bivariate data sets Univariate data sets Bivariate data sets
 Mean Rank Wins Mean Rank Wins Mean Rank Wins Mean Rank Wins
MODL 84.8% 2.6  85.8% 2.8 98.6% 3.0 96.8% 4.2
Khiops 84.1% 3.4 3/1 83.7% 4.7 4/0 98.6% 3.8 1/0 97.2% 2.5 0/3
BIC 83.2% 4.2 4/0 84.9% 3.2 3/0 96.1% 5.2 3/0 93.9% 6.7 7/0
CHAID 83.3% 3.7 2/0 84.7% 4.0 2/1 96.1% 5.2 1/0 93.6% 7.3 7/0
Tschuprow 82.8% 6.4 7/0 83.3% 6.6 6/0 96.6% 5.2 1/0 93.8% 5.5 3/0
GainRatio 81.5% 6.1 5/1 82.9% 5.8 4/0 95.4% 6.0 1/0 93.0% 5.7 5/0
ExMODL 83.4% 5.2 5/0 84.6% 4.7 4/0 98.5% 3.8 0/0 97.1% 2.7 0/2
ExCHAID 81.9% 7.4 7/0 83.2% 5.7 6/0 96.2% 5.8 2/0 94.6% 3.5 2/2
NoGrouping 84.0% 4.1 4/0 84.6% 5.1 4/0 97.3% 6.4 3/0 94.0% 6.2 6/0

Table 2. Summary of the test accuracy and robustness results (mean, average rank and number of 
wins/losses) of the Naïve Bayes classifier on the UCI data sets, in univariate analysis and 
bivariate analysis 

The results look consistent on the three indicators and show that the MODL method 
dominates the other methods on the test accuracy criterion. The mean results are pictured in 
Figure 6 with the classification accuracy reported both on train and test data sets, in order to 
visualize the train and test accuracy of the methods in a two criteria-analysis. The thick gray line 
on the diagonal represents the asymptotic best achievable robustness of the methods. The thin 
gray line highlights the Pareto curve in the two-criteria analysis between robustness and test 
accuracy. 
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Figure 6. Mean of the train accuracy and test accuracy of the Naïve Bayes classifier on the UCI 

data sets, in univariate analysis (on the left) and bivariate analysis (on the right) 

Most methods do not perform better than the NoGrouping method. This probably explains 
why the Naïve Bayes classifiers do not make use of groupings in the literature. The MODL 
method clearly dominates all the other methods, owing to the quality of its groupings. The 
resulting Naïve Bayes classifier is both the more robust one (together with Khiops) and the more 
accurate on test data sets. Another important aspect learnt from this experiment is the overall gain 
in test accuracy when the pairs of attributes are used. The bivariate analysis allows to investigate 
simple interactions between attributes and to go beyond the limiting independence assumption of 
the Naïve Bayes classifier. Although this degrades the robustness (because of a decrease in the 
frequency of the categorical values), this enhances the test accuracy. From univariate to bivariate 
analysis, the MODL method achieves an increase in test accuracy about twice and a decay in 
robustness approximately half that of the reference NoGrouping method. 
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Compared to the NoGrouping method, the MODL method is the only evaluated grouping 

method that improves the test accuracy of the Naïve Bayes classifier. The most noticeable effect 
of using the MODL method is a drastic improvement of the robustness. 

4 Conclusion 
When categorical attributes contain few values, typically less than 10 values, using a grouping 
method is not required. As the number of values increases (which is common in marketing 
applications), preprocessing the categorical attributes becomes attractive in order to improve the 
performance of classifiers. The issue of grouping methods is to reduce the number of groups of 
values while maintaining the conditional class information. 

The MODL grouping method exploits the precise definition of a family of grouping models 
with a general prior. This provides a new evaluation criterion which is minimal for the Bayes 
optimal grouping, i.e. the most probable grouping given the data sample. An optimization 
heuristics including preprocessing and post-optimizations is proposed in this paper to optimize 
the grouping with super-linear time complexity. This algorithm manages to efficiently find high 
quality groupings. 

Extensive evaluations both on real and synthetic data indicate notable performances for the 
MODL method. It is time efficient and does not require any parameter setting. It builds groupings 
that are both robust and accurate. The more valuable characteristic of the MODL method is 
probably the understandability of the groupings. Although understandability is hard to evaluate, 
the method is theoretically founded to produce correct explanations of the explanatory categorical 
attributes on the basis of the partition of their values, and even the most probable "grouping 
based" explanation given the train data. 
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Appendix A 
In this appendix, we first present the combinatorial formula used to evaluate the numbers of 
partition of a set and second provide the proof of the theorems introduced in the paper. 

A.1 Partition numbers 
The number of ways a set of n elements can be partitioned into nonempty subsets is called a Bell 
number and denoted Bn. 

The number of ways of partitioning a set of n elements into k nonempty subsets is called a 
Stirling number of the second kind and denoted ( ),S n k . 

The Bell numbers can be defined by the sum 

( )
1

,
n

n
k

B S n k
=

= ∑  . 

Let ( ),B n k  be the number of partition of a set of n elements into at most k parts. This 
number, that we choose to call a generalized Bell number, can be defined by the sum 

( ) ( )
1

, ,
k

i
B n k S n i

=

= ∑  . 

 
 

Theorem 1: A SGM model distributed according to the three-stage prior is Bayes optimal for a 
given set of categorical values if the value of the following criterion is minimal on the set of all 
SGM models: 
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Proof: 
The prior probability of a grouping model M can be defined by the prior probability of the 
parameters of the model. 

Let us introduce some notations: 
• ( )p K : prior probability of the number of groups K, 

• ( ){ }( )p k i : prior probability of a partition (defined by ( ){ }k i ) of the categorical 

values into K groups, 
• { }( )kjp n : prior probability of the set of parameters{ }11,..., ,...,kj KJn n n , 

• { }( )kj k
p n : prior probability of the set of parameters{ }1,...,k kJn n . 

The objective is to find the grouping model M that maximizes the probability ( )|p M D  for a 
given train data set D. Using Bayes formula and since the probability ( )p D  is constant under 
varying the model, this is equivalent to maximize ( ) ( )|p M p D M . 

Let us first focus on the prior probability ( )p M  of the model. We have 
( ){ } { }( )

( ) ( ){ }( ) { } ( ){ }( )
( ) , ,

| | , .

kj

kj

p M p K k i n

p K p k i K p n K k i

=

=
 

The first hypothesis of the three-stage prior is that the number of groups is uniformly 
distributed between 1 and I. Thus we get 

1( )p K
I

=  . 

The second hypothesis is that all the partition of the categorical values into at most K groups 
are equiprobable for a given K. Computing the probability of one set of groups turns into the 
combinatorial evaluation of the number of possible group sets. This number is equal to the 
generalized Bell number ( ),B I K . Thus we obtain 

( ){ }( ) ( )
1|
,

p k i K
B I K

= . 

The last term to evaluate can be rewritten as a product using the hypothesis of independence 
of the distributions of the class values between the groups. We have 

{ } ( ){ }( ) { } { } { } ( ){ }( )
{ } ( ){ }( )
{ }( )
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∏

∏

 

The frequencies per group nk derive from the frequencies per categorical values ni for a given 
partition of the values into groups. 

For a given group k with size nk, all the distributions of the class values are equiprobable. 
Computing the probability of one distribution is a combinatorial problem, which solution is 

{ }( ) 1
1

1|
k

kj k Jk
n J

p n n
C −

+ −

= . 

Thus, 
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The prior probability of the model is then 

( ) 1
1 1

1 1 1( )
,

k

K

J
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I B I K C −

= + −

= ∏ . 

Let us now evaluate the probability of getting the train data set D for a given model M. We 
first divide the data set D into K subsets Dk of size nk corresponding to the K groups. Using again 
the independence assumption between the groups, we obtain 

( ){ } { }( )
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as evaluating the probability of a subset Dk under uniform prior turns out to be a multinomial 
problem. 

 
Taking the negative log of the probabilities, the maximization problem turns into the 

minimization of the claimed criterion 
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Theorem 2: In a Bayes optimal SGM model distributed according to the three-stage prior, two 
pure categorical values having the same class are necessary in the same group. 

 
Proof: 
Let a and b be the two pure values related to the same class (indexed as class 1 for convenience 
reasons). Let us assume that, contrary to the claim, the two values are separated into two groups 
A1 and B1. 

We construct two new groups A0 and B2 by moving the pure value a from A1 to B1. The cost 
variation ∆Cost1 of the grouping is 

( ) ( )( ) ( )
( ) ( )( ) ( )
( ) ( )( ) ( )
( ) ( )( )

0 0 0 0,1 0,2 0,

2 2 2 2,1 2,2 2,

1 1 1 1,1 1,2 1,

1 1 1 1

1 1

log 1 ! ! 1 ! log ! ! !... !

log 1 ! ! 1 ! log ! ! !... !

log 1 ! ! 1 ! log ! ! !... !

log 1 ! ! 1 ! log !

A A A A A A J

B B B B B B J

A A A A A A J

B B B B

Cost PartitionCost

n J n J n n n n

n J n J n n n n

n J n J n n n n

n J n J n n

∆ = ∆

+ + − − +

+ + − − +

− + − − −

− + − − − ( ),1 1,2 1,! !... ! .B B Jn n

 

If the A1 group contains only the a value, moving a from A1 to B1 results in a decreased 
number of groups, with a related variation of partition cost 

( )( ) ( )( )1 log , 1 log ,PartitionCost B I K B I K∆ = − − , 
which is negative. In the opposite case, the number of groups remains the same and the 

resulting variation of partition cost is zero. 
The frequencies are the same for each class except for class 1, thus 
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Similarly, we construct two groups A2 and B0 by moving pure value b from B1 to A1. This 
time, the cost variation ∆Cost2 of the grouping is 
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Let us assume that 

( ) ( )11 11,111,1 −+≤−+ JnnJnn BBAA . 
Using the property 

( ) ( ) ( ) ( )0 z x y x z y z x y x z y z≤ ≤ < ⇒ − − ≤ ≤ + + , 
we obtain 

( ) ( ) ( )

( ) ( ) ( )

1

1,1 1 1,1 1
0

1,1 1 1,1 1
1

1 1

1 1 .

a
a

a
a

n
n

A A A A
n

n
n

B B B B
n

n n n n J n n J

n n J n n n n J

−

=

=

− − + − ≤ + −

≤ + − ≤ + + + −

∏

∏
 

Thus, we get 1 1 0Cost PartitionCost∆ −∆ ≤ . 
 
On the opposite, let us assume that 

( ) ( )1,1 1 1,1 11 1A A B Bn n J n n J+ − ≥ + − . 
This time, we obtain 2 2 0Cost PartitionCost∆ −∆ ≤ . 
Since the variations of partition costs are always non-negative, at least one of the two cost 

variations ∆Cost1 or ∆Cost2 is negative and the initial grouping could not be optimal. As this is 
contradictory with the initial assumption, the claim follows.  

 
Remark: 
If the partition costs are evaluated using the Stirling numbers of the second kind instead of the 
generalized Bell numbers, this theorem is no longer true, since decreasing the number of groups 
can result in an increase of the partition cost (for example, S(I,I-1) = I(I-1)/2 and S(I,I) = 1). 

 
 

Theorem 3: In a SGM model distributed according to the three-stage prior and in the case of two 
classes, the Bayes optimal grouping model consists of a single group when each instance has a 
different categorical value. 
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Proof: 
Since each instance has a different categorical value, all the categorical values are pure values 
associated with one among the J class values. According to Theorem 2, the values having the 
same class values are necessary in the same group. The optimal grouping contains at most J 
groups. 

Let A and B be two groups and A∪B the group obtained by merging A and B. 
Let nA, nB and nA∪B be the frequencies of these groups, and let nA,j, nB,j and nA∪B,j be the 

frequencies per class value in these groups. 
When the two groups are merged, the number of groups decreases from K to K-1 with the 

variation of partition cost ( )( ) ( )( )KIBKIBostPartitionC ,log1,log −−=∆ . 
The total variation of the grouping cost is 

( ) ( )( )
( ) ( )( )
( ) ( )( )

1
1 ,1 ,2 ,

1
1 ,1 ,2 ,

1
1 ,1 ,2 ,

log log ! ! !... !

log log ! ! !... !

log log ! ! !... ! ,

A B

A

B

J
n J A B A B A B A B J

J
n J A A A A J

J
n J B B B B J

Cost PartitionCost

C n n n n

C n n n n

C n n n n

∪

−
+ − ∪ ∪ ∪ ∪

−
+ −

−
+ −

∆ = ∆

+ +

− +

− +

 

( ) ( ) ( ) ( )( )

( ),

,
1

log 1 ! 1 ! 1 ! 1 !

log .A j

A B j

A B A B

J
n
n

j

Cost PartitionCost

n J J n J n J

C
∪

∪

=

∆ = ∆

+ + − − + − + −

−∑

 

 
Since each class is fully contained either in group A or B, we obtain 

( ) ( ) ( ) ( )( )log 1 ! 1 ! 1 ! 1 ! .A B A BCost PartitionCost n J J n J n J∪∆ = ∆ + + − − + − + −  
 
We are in the case of 2 class values and thus have J = 2, nA∪B = n, K = 2. 

( )( ) ( )( ) ( ) ( ) ( )( )
( ) ( )11

2

log ,1 log ,2 log 1 ! 1 ! 1 !

log 2 log log( 2).A

A B

nn
n

Cost B n B n n n n

C n+−
+

∆ = − + + + +

= − + − +
 

Since we have 1
1

1
1 2 −

−
−
− ≤+= nk

n
k
n

k
n CCC  for 1>n  and 1>k  (with a strict inequality when 

2n > ), we finally obtain 

( ) ( )
( )( )

1 1log 2 log 2 log( 2)

log 4 2

0.

n nCost n

n

− +∆ < − + − +

< +

<

 

The claim follows. 
 

Remark: 
If the partition costs are evaluated using the Stirling numbers of the second kind instead of the 
generalized Bell numbers, this theorem is no longer true. In particular, when the class values are 
equi-distributed, the grouping cost in the case of a single group ( ( )2log( ) log( 1) log n

nn n C+ + + ) is 
higher than the grouping cost in the case of one group per categorical value ( ( )log( ) log 2n n+ ). 
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