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Abstract. While real data often comes in mixed format, discrete and continuous, many 
supervised induction algorithms require discrete data. Efficient discretization of continuous 
attributes is an important problem that has effects on speed, accuracy and understandability of 
the induction models. In this paper, we propose a new discretization method MODL*, 
founded on a Bayesian approach. We introduce a space of discretization models and a prior 
distribution defined on this model space. This results in the definition of a Bayes optimal 
evaluation criterion of discretizations. We then propose a new super-linear optimization 
algorithm that manages to find near-optimal discretizations. Extensive comparative 
experiments both on real and synthetic data demonstrate the high inductive performances 
obtained by the new discretization method. 
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1 Introduction 

Discretization of continuous attributes is a problem that has been studied 
extensively in the past (Catlett, 1991; Holte, 1993; Dougherty et al., 1995; Zighed 
and Rakotomalala, 2000; Liu et al., 2002). Many classification algorithms rely on 
discrete data and need to discretize continuous attributes, i.e. to slice their domain 
into a finite number of intervals. Decision tree algorithms first discretize the 
continuous attributes before they proceed with the attribute selection process. Rule-
set learning algorithms exploit discretization methods to produce short and 
understandable rules. Bayesian network methods need discrete values to compute 
conditional probability tables. 

In the discretization problem, a compromise must be found between information 
quality (homogeneous intervals in regard to the attribute to predict) and statistical 
quality (sufficient sample size in every interval to ensure generalization). The chi-
square-based criteria (Kass, 1980; Bertier and Bouroche, 1981; Kerber, 1991) focus 
on the statistical point of view whereas the entropy-based criteria (Catlett, 1991; 
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Quinlan, 1993) focus on the information theoretical point of view. Other criteria 
such as Gini (Breiman et al., 1984) or Fusinter criterion (Zighed et al., 1998) try to 
find a trade off between information and statistical properties. The Minimum 
Description Length (MDL) criterion (Fayyad and Irani, 1992) is an original 
approach that attempts to minimize the total quantity of information both contained 
in the model and in the exceptions to the model. While most discretization methods 
are univariate and consider only a single attribute at a time, some multivariate 
discretization methods have also been proposed (Bay, 2001). 

In this paper, we focus on univariate supervised discretization methods and 
propose a new method called MODL based on a Bayesian approach. First, we 
define a space of discretization models. The parameters of a specific discretization 
are the number of intervals, the bounds of the intervals and the class frequencies in 
each interval. Then, we define a prior distribution on this model space. Finally, we 
derive an evaluation criterion of discretizations, which is a direct application of the 
Bayesian approach for the discretization model space and its prior distribution. This 
criterion is minimal for the Bayes optimal discretization. Another important 
characteristic of the MODL discretization method is the search algorithm used to 
find optimal discretizations, i.e. discretizations which minimize the evaluation 
criterion. We describe an optimal search algorithm time complexity O(n3) where n is 
the sample size. We also propose a greedy search heuristic with super-linear time 
complexity and a new post-optimization algorithm that allows obtaining optimal 
discretizations in most cases. We demonstrate through numerous experiments that 
the theoretical potential of the MODL method leads to high quality discretizations. 

The remainder of the paper is organized as follows. Section 2 presents the 
MODL method and its optimal evaluation criterion. Section 3 focuses on the MODL 
discretization algorithm. Section 4 proceeds with an extensive experimental 
evaluation both on real and synthetic data. Section 5 studies the relative contribution 
of the optimization criterion versus the search strategy. 

2 The MODL evaluation criterion 

The discretization methods have to solve a problem of model selection, where 
the data to fit is a string of class values and the model is a discretization model. The 
Bayesian approach and the MDL approach (Rissanen, 1978) are two techniques to 
solve this problem. In this section, we first recall the principles of these model 
selection techniques, and second present the MODL method, based on a Bayesian 
approach of the discretization problem. 

 
2.1 Bayesian versus MDL model selection techniques 

 
In the Bayesian approach, the best model is found by maximizing the probability 

( )DataModelP of the model given the data. Using Bayes rule and since the 
probability ( )DataP  is constant while varying the model, this is equivalent to 
maximizing: 

( ) ( )ModelDataPModelP . (1) 
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Once the prior distribution of the models is fixed, the Bayesian approach finds 
the optimal model of the data, provided that the calculation of the probabilities 
( )ModelP  and ( )ModelDataP  is feasible. 

To introduce the MDL approach, we can reuse the Bayes rule, replacing the 
probabilities by their negative logarithms. These negative logarithms of probabilities 
can be interpreted as Shannon code lengths, so that the problem of model selection 
becomes a coding problem. In the MDL approach, the problem of model selection is 
to find the model that minimizes: 

( ) ( )ModelDatanLengthDescriptioModelnLengthDescriptio + . (2) 

The relationship between the Bayesian approach and the MDL approach has 
been examined by (Vitanyi and Li, 2000). The Kolmogorov complexity of an object 
is the length of the shortest program encoding an effective description of this object. 
It is asymptotically equal to the negative log of a probability distribution called the 
universal distribution. Using these notions, the MDL approach turns into ideal 
MDL: it selects the model that minimizes the sum of the Kolmogorov complexity of 
the model and of the data given the model. It is asymptotically equivalent to the 
Bayesian approach with a universal prior for the model. The theoretical foundations 
of MDL allow focusing on the coding problem: it is not necessary to exhibit the 
prior distribution of the models. Unfortunately, the Kolmogorov complexity is not 
computable and can only be approximated. 

To summarize, the Bayesian approach allows selecting the optimal model 
relative to the data, once a prior distribution of the models is fixed. The MDL 
approach does not need to define an explicit prior to find the optimal model, but the 
optimal description length can only be approximated and the approach is valid 
asymptotically. 

 
2.2 The MODL optimal evaluation criterion 

The objective of the discretization process is to induce a list of intervals that split 
the numerical domain of a continuous explanatory attribute. The data sample 
consists of a set of instances described by pairs of values: the continuous 
explanatory value and the class value. If we sort the instances of the data sample 
according to the continuous values, we obtain a string S of class values. In 
Definition 1, we introduce a space of discretization models. 

 
Definition 1: A standard discretization model is defined by the following 

properties: 
1. the discretization model relies only on the order of the class values in the 

string S, without using the values of the explanatory attribute, 
2. the discretization model splits the string S into a list of substrings (the 

intervals), 
3. in each interval, the distribution of the class values is defined by the 

frequencies of the class values in this interval. 
Such a discretization model is called a SDM model. 
 
Notation: 
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 n: number of instances 
J: number of classes 

 I: number of intervals 
 ni: number of instances in the interval i 
 nij: number of instances of class j in the interval i 
A SDM model is defined by the parameter set { { } { }

JjIiijIii nnI
≤≤≤≤≤≤ 1,11 ,, }. 

This definition is very general and most discretization methods rely on SDM 
models. They first sort the samples according to the attribute to discretize (property 
1) and try to define a list of intervals by partitioning the string of class values 
(property 2). The evaluation criterion is always based on the frequencies of the class 
values (property 3). 

Once a model space is defined, we need to fix a prior distribution on this model 
space in order to apply the Bayesian approach. The prior Definition 2 uses a 
uniform distribution at each stage of the parameters hierarchy of the SDM models. 
We also introduce a strong hypothesis of independence of the distributions of the 
class values. This hypothesis is often assumed (at least implicitly) by many 
discretization methods that try to merge similar intervals and separate intervals with 
significantly different distributions of class values. This is the case for example with 
the ChiMerge discretization method (Kerber, 1991), which merges two adjacent 
intervals if their distributions of class values are statistically similar (using the chi-
square test of independence). 

 
Definition 2: The following distribution prior on SDM models is called the 

three-stage prior: 
1. the number of intervals I is uniformly distributed between 1 and n, 
2. for a given number of intervals I, every division of the string to discretize into 

I intervals is equiprobable, 
3. for a given interval, every distribution of class values in the interval is 

equiprobable, 
4. the distributions of the class values in each interval are independent from each 

other. 
 
Owing to the definition of the model space and its prior distribution, the Bayes 

formula is applicable to exactly calculate the prior probabilities of the models and 
the probability of the data given a model. Theorem 1 introduces the MODL 
evaluation criterion. 

 
Theorem 1: A SDM model distributed according to the three-stage prior is 

Bayes optimal for a given set of instances to discretize if the value of the following 
criterion is minimal: 

 ( ) ( ),1 ,2 ,
1 1

11
log log log log ! ! !... !

1 1

I I
i

i i i i J
i i

n Jn I
n n n n n

I J= =

+ −+ −   
+ + +  − −   

∑ ∑ . (3) 

Proof: 
The prior probability of a discretization model M can be defined by the prior 
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probability of the parameters of the model { { } { }
JjIiijIii nnI

≤≤≤≤≤≤ 1,11 ,, }. 

Let us introduce some notations: 
• ( )Ip : prior probability of the number of intervals I , 
• { }( )inp : prior probability of the parameters { }Inn ,...,1 , 
• ( )inp : prior probability of the parameter in , 
• { }( )ijnp : prior probability of the parameters{ }IJij nnn ,...,,...,11 , 
• { }( )

iijnp : prior probability of the parameters{ }iJi nn ,...,1 . 

The objective is to find the discretization model M that maximizes the 
probability )( SMp for a given string S of class values. Using Bayes formula and 
since the probability )(Sp is constant under varying the model, this is equivalent to 
maximizing )()( MSpMp . 

Let us first focus on the prior probability )(Mp of the model. We have 
{ } { }( )iji nnIpMp ,,)( =  

 
( ) { }( ) { } { }( )iiji nInpInpIp ,= . 

The first hypothesis of the three-stage prior is that the number of intervals is 
uniformly distributed between 1 and n. Thus we get 

n
Ip 1)( = . 

The second hypothesis is that all the divisions of S into I intervals are 
equiprobable for a given I. Computing the probability of one set of intervals turns 
into the combinatorial evaluation of the number of possible interval sets. Dividing 
the string S into I intervals is equivalent to decomposing the natural number n as the 
sum of the frequencies in of the intervals. Using combinatorics, we can prove that 

the number of choices of such any { } Iiin ≤≤1  is equal to
1

1
n I

I
+ − 

 − 
. Thus we obtain 

{ }( ) 1
1

1

ip n I
n I

I

=
+ − 

 − 

. 

The last term to evaluate can be rewritten as a product using the hypothesis of 
independence of the distributions of the class values between the intervals. We have 

{ } { }( ) { } { } { } { }( )iIijijijiij nInnnpnInp ,,...,,,
21

=  

 
{ } { }( )∏

=

=
I

i
iiij nInp

1
,  

 
{ }( )∏

=

=
I

i
iiij nnp

1
. 

For a given interval i with size ni, all the distributions of the class values are 
equiprobable. Computing the probability of one distribution is a combinatorial 
problem, which solution is: 
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{ }( ) 1
1

1

ij i
i

p n n
n J

J

=
+ − 

 − 

. 

Thus, 

{ } { }( )
1

1,
1

1

I

ij i
ii

p n I n
n J

J
=

=
+ − 

 − 

∏ . 

The prior probability of the model is then 

1

1 1 1( )
1 1

1 1

I

ii
p M

n I n Jn
I J

=

=
+ − + −   

   − −   

∏ . 

Let us now evaluate the probability of getting the string S for a given model M. 
We first split the string S into I sub-strings Si of size ni and use again the 
independence assumption between the intervals. We obtain 

{ } { }( )iji nnISpMSp ,,)( =  

 
{ } { }( )ijiI nnISSSp ,,,...,, 21=  

 
{ } { }( )∏

=

=
I

i
ijii nnISp

1
,,  

 ( )∏
=

=
I

i Jiiii nnnn1 ,2,1, !!...!!
1

, 

as evaluating the probability of a sub-string Si under uniform prior turns out to be a 
multinomial problem.  

 
Taking the negative log of the probabilities, the maximization problem turns into 

the minimization of the claimed criterion 

( ) ( ),1 ,2 ,
1 1

11
!log log log log ! !... !

1 1

I I
i

i i i i J
i i

n Jn I
nn n n n

I J= =

+ −+ −   
+ + +  − −   

∑ ∑ .■ 

 
The first term of the criterion corresponds to the choice of the number of 

intervals and the second term to the choice of the bounds of the intervals. The third 
term represents the choice of the class distribution in each interval and the last term 
encodes the probability of the data given the model. 

When the MODL criterion is used, we prove in Theorem 2 that optimal splits 
always fall on boundary points, where boundary points are located between two 
instances in the string S having different class values. The same property have 
already be presented for the MDLPC criterion in (Fayyad and Irani, 1992) and for a 
larger class of impurity measures in (Elomaa and Rousu, 1996). 
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Theorem 2: In a Bayes optimal SDM model distributed according to the three-
stage prior, there is no split between two instances related to the same class. 

 
Proof: 

Assume that, contrary to the claim, such a split exists between two instances 
related to the same class (indexed as class 1 for convenience reasons). Let A1 and 
B1 be the intervals from each side of the split. 

We construct two new intervals A0 and B2 by moving the last instance from A1 
to B1. The cost variation 1Cost∆  of the discretization is 

 

( ) ( )( ) ( )
( ) ( )( ) ( )
( ) ( )( ) ( )
( ) ( )( ) ( )!!...!!log!1!!1log

!!...!!log!1!!1log
!!...!!log!1!!1log

!!...!!log!1!!1log1

,12,11,1111

,12,11,1111

,22,21,2222

,02,01,0000

JBBBBBB

JAAAAAA

JBBBBBB

JAAAAAA

nnnnJnJn
nnnnJnJn

nnnnJnJn
nnnnJnJnCost

−−−+−

−−−+−

+−−++

+−−+=∆

.

 

The frequencies are the same for each class except for class 1, thus 

 
( ) ( )( ) ( ) ( )( )

( )( ) ( )( )!1!log!1!log
!1!log!1!2log1

1,11,11,11,1

1111

++−
+−+++−+−+=∆

BBAA

BBAA

nnnn
JnJnJnJnCost

 

( ) ( )( ) ( )( )1log1log 1,11,111 ++−++= BAAB nnJnJn  
( ) ( )( ) ( )
( ) ( )( ) ( )( )1111

1,111,11

1log1log
log11log

AABB

AABB

nJnnJn
nnnn

−+−++

+−++=
. 

Using the property ( ) ( ) xyxyyx <++⇒<≤ 111 , we get 

 
( ) ( )
( ) ( )( ) ( ) ( )( )1log1log

loglog1

1111

1,111,11

++−++

+−<∆

AABB

AABB

nJnnJn
nnnnCost

. 

Similarly, we construct two intervals A2 and B0 by moving the first instance 
from B1 to A1. This time, the cost variation 2Cost∆  of the discretization subject to 

 
( ) ( )
( ) ( )( ) ( ) ( )( )1log1log

loglog2

1111

1,111,11

++−++

+−<∆

BBAA

BBAA

nJnnJn
nnnnCost

. 

We notice that the two cost variations 1Cost∆  and 2Cost∆  have exactly 
opposite values. Therefore, the cost variation of the discretization is strictly negative 
and the initial discretization could not be optimal. As this is contradictory with the 
initial assumption, the claim follows. ■ 

 
Based on Theorem 2, important reductions in time consumption can be obtained 

in the optimization algorithms, since only the boundary points need to be evaluated 
to find optimal or near-optimal discretizations. 

 
Theorem 3: In a Bayes optimal SDM model distributed according to the three-

stage prior, there is no pair of adjacent intervals each containing one single instance. 
 

Proof: 
Let A and B be two adjacent intervals each containing one single instance 

related to different classes (otherwise, the intervals should be merged according to 
Theorem 2). We compute the cost variation Cost∆  of the discretization after the 
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merge of the two intervals into a new interval A B∪ , bringing the number of 
intervals from I down to I-1. 

( )

( )

( )

,1 ,2 ,

,1 ,2 ,

,1 ,2 ,

2 1
log log

2 1

1
log log ! ! !... !

1

1
log log ! ! !... !

1

1
log log ! ! !... !

1

A B
A B A B A B A B J

A
A A A A J

B
B B B B J

n I n I
Cost

I I

n J
n n n n

J

n J
n n n n

J

n J
n n n n

J

∪
∪ ∪ ∪ ∪

+ − + −   
∆ = −   − −   

 + − 
+ +   −  
 + − 

− +   −  
 + − 

− + − 


  
 

 

( ) ( ) ( ) ( ) ( )( )
,

,1

log 1 1 log 1 ! 1 ! 1 ! 1 !

log

A B A B

J A B j

A jj

Cost I n I n J J n J n J

n

n

∪

∪

=

∆ = − + − + + − − + − + −

 
−   

 
∑

 
Since 1A Bn n= =  and 2A Bn ∪ = , we obtain: 

( ) ( )JJInICost 1log11log ++−+−=∆ . 
10 +≤⇔≤∆ nJICost . 

The cost variation is always strictly negative after the merge of two adjacent 
singleton intervals. The claim follows. ■ 

 
The main interest of Theorem 3 is to provide an intuitive evaluation of the 

asymptotic behaviour of the three-stage prior: a discretization model based on two 
adjacent singleton interval is not optimal for a good generalization. Theorem 4 is 
another interesting property resulting from the three-stage prior. 

 
Theorem 4: In a SDM model distributed according to the three-stage prior and 

in the case of two classes, the discretization composed of one single interval is more 
probable than the discretization composed of one interval per instance. 

 
Proof: 

Let Cost1 and Costn be the value of the MODL criterion in the case of one 
interval and of n intervals. 

( ) ( ) ( )1 1 2!log log 1 log ! !nCost n n n n= + + + . 

( ) ( ) ( )( ) ( )log log 2 1 ! 1 ! ! log 2nCost n n n n n= + − − + . 

Since ( ) ( ) ( )1 1 ! 1! ! 2 1 ! 1 ! !n n n n n n+ = + ≤ − −  and 1 2! ! ! 2nn n n < , the claim 
follows. ■ 

 
A close inspection of formula 3 reveals that the second term, which encodes the 

number of choices when dividing the string S into I intervals, includes the 
possibility of empty intervals. This is a deliberate choice in the three-stage prior that 
favours discretizations with small numbers of intervals. If we exclude this 
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possibility, the theorems 2, 3 and 4 are no longer true. These empty intervals do not 
need to be explored in optimization algorithms since adding empty intervals is 
always penalized by an increase of the evaluation criterion. 

 
To summarize, the MODL discretization method is directly based on the 

Bayesian approach. The definitions of the SDM models and the three-stage prior are 
both general enough to capture the complexity of real data and simple enough to 
allow an exact calculation of the probabilities involved in the Bayes rule. This 
provides the guarantee of optimality in the choice of the discretization model, in the 
context of the three-stage prior. The bias resulting from the choice of this prior leads 
to interesting demonstrable properties. 

3 The MODL algorithm 

Once the optimality of this evaluation criterion is established, the problem is to 
design a search algorithm in order to find a discretization model that minimizes the 
criterion. In this section, we present three algorithms that represent different trade-
off between the time complexity of the search algorithm and the quality of the 
discretizations. 

 
3.1 Optimal algorithm 

The MODL evaluation criterion consists of an evaluation of the partition of the 
string S into I intervals (first and second term in formula 3) and of the sum of the 
evaluation of the intervals Si (third and last term in formula 3). The first part of the 
MODL criterion (value of the partition) depends only upon the sample size n and 
the number of intervals I and the second part (value of the intervals) is cumulative 
on the intervals. Hence, if a partition of S into I intervals S1, S2, … SI is a MODL 
optimal discretization of S, then a partition of S-S1 into I-1 intervals S2, … SI is a 
MODL optimal discretization of S-S1. This interesting property is sufficient to adapt 
the dynamic programming algorithm presented in (Fischer, 1958; Lechevallier, 
1990; Fulton et al., 1995; Elomaa and Rousu, 1996). We summarize in Table 1 this 
dynamic programming algorithm applied to the MODL discretization method. 

The main loop of the algorithm finds the optimal discretizations of S into exactly 
k intervals ( nk ≤≤1 ), and thus to obtain the optimal MODL discretization of the 
string S. The algorithm runs in O(n3) time. Although it is not applicable in the case 
of large databases, this optimal algorithm is helpful to evaluate the quality of search 
heuristics such as these presented in the next sections. 
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Table 1: Dynamic programming algorithm 

Let Si,j be the substring of S consisting of the instances from i to j. S1,n = S. 
Let Disc(Si,j, k) be the optimal discretization of Si,j into exactly k intervals. 

- For each k, nk ≤≤1 , 
- For each j, nj ≤≤1 , 

- If k=1, Disc(S1,j, 1) = {S1,j} 
- If k>1, Disc(S1,j, k) is obtained by minimizing the MODL value of 

all discretizations Disc(S1,i, k-1) U {Si+1,j} for ji ≤≤1 . 
 

3.2 Greedy heuristic 

In this section, we present a standard greedy bottom-up heuristic. The method 
starts with initial single value intervals and then searches for the best merge between 
adjacent intervals. This merge is performed if the MODL value of the discretization 
decreases after the merge and the process is reiterated until not further merge can 
decrease the criterion.  

Table 2: Optimized greedy bottom-up merge algorithm 

- Initialization 
- Sort the explanatory attribute values: O(n log(n)) 
- Create an elementary interval for each value: O(n) 
- Compute the value of this initial discretization: O(n) 
- Compute the ∆values related to all the possible merges: O(n) 
- Sort the possible merges: O(n log(n)) 

- Optimization of the discretization 
Repeat the following steps: at most n steps 
- Search for the best possible merge: O(1) 
- Merge and continue if the best merge decreases the discretization value 

- Compute the ∆values of the two intervals adjacent to the merge: O(1) 
- Update the sorted list of merges: O(log(n)) 

 
With a straightforward implementation of the algorithm, the method runs in 

O(n3) time. However, the method can be optimized in O(n log(n)) time owing to an 
algorithm similar to that presented in (Boullé, 2004) and summarized in Table 2. 
The algorithm is mainly based on the additivity of the evaluation criterion. Once a 
discretization is evaluated, the value of a new discretization resulting from the 
merge between two adjacent intervals can be evaluated in a single step, without 
scanning all the other intervals. Minimizing the value of the discretizations after the 
merges is the same as maximizing the related variation of value ∆value. These 
∆values can be kept in memory and sorted in a maintained sorted list (such as an 
AVL binary search tree for example), or more simply in a priority-queue. After a 
merge is completed, the ∆values need to be updated only for the new interval and its 
adjacent intervals to prepare the next merge step. 
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3.3 Post-optimization algorithm 

Compared to the optimal algorithm, the greedy heuristic is time efficient, but it 
may fall into a local optimum. First, the greedy heuristic may stop too soon and 
produce too many intervals. Second, the boundaries of the intervals may be sub-
optimal since the merge decisions of the greedy heuristic are never rejected. Given 
that the MODL criterion is optimal, a time efficient post-optimization of the 
discretization is meaningful. 

We propose a new post-optimization algorithm based on hill-climbing search in 
the neighborhood of a discretization. The neighbors of a discretization are defined 
with combinations of interval splits and interval merges, as pictured in Figure 1. 

 
Discretization intervals 

… Ik-1 Ik Ik+1 Ik+2 Ik+3 … 

Split of Ik       

Merge of Ik and Ik+1      

MergeSplit of Ik and Ik+1      

MergeMergeSplit of Ik, Ik+1 et Ik+2     
 

Figure 1: Combinations of interval splits and interval merges used to explore the 
neighborhood of a discretization 

 
In a first stage called exhaustive merge, the greedy heuristic merge steps are 

performed unconditionally until the discretization consists of a single interval. The 
best encountered discretization is then memorized. This stage allows escaping local 
minima with several successive merges and needs O(n log(n)) time. 

In a second stage called greedy post-optimization, all the neighbours of the best 
discretization consisting of Splits, MergeSplits and MergeMergeSplits are 
evaluated. The best improvement of the discretization is performed if the evaluation 
criterion decreases, and this steps is reiterated until no neighbour can decrease the 
value of the discretization. The calculation of all these discretization neighbours can 
be done in O(n) time and inserted in sorted lists in O(n log(n)) time, like in the 
greedy bottom-up merge algorithm. Each improvement of the discretization requires 
O(log(n)) time to maintain the data structures kept in memory. This second stage 
converges very quickly and requires only a few steps, so that its overall time 
complexity is still O(n log(n)). 

The post-optimization holds two straightforward notable properties. The first 
one is that post-optimizing can only improve the results of the standard greedy 
heuristic since its comes after. The second one is that in case of attributes whose 
optimal discretization consists of one single interval, the optimum is necessarily 
found owing to the exhaustive merge stage of the post-optimization. 
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4 Experiments 

In our experimental study, we compare the MODL discretization method with 
other discretization algorithms. In this section, we introduce the evaluation protocol, 
the alternative evaluated discretization methods and expose the evaluation results on 
real and artificial datasets. 

 
4.1 The evaluation protocol 

Discretization is a general purpose preprocessing method that can be used for 
data exploration or data preparation in data mining. While they are critical in the 
case of decision tree methods, discretization methods can also be used for bayesian 
networks, rule-set algorithms or logistic regression. However, discretization 
methods have mainly been evaluated using decision trees (Fayyad and Irani, 1992; 
Kohavi and Sahami, 1996; Elomaa and Rousu, 1999; Liu and al. 2002) and less 
frequently using naïve Bayes methods (Dougherty et al., 1995). In their 
experiments, (Kohavi and Sahami, 1996) report that entropy-based discretization 
methods perform better that error-based methods. Maximizing the accuracy on each 
attribute can hide the variations of the class conditional density and hinder 
improvements of the classifier accuracy when the attributes are combined. In the 
case of naïve Bayes classifiers, (Dougherty et al., 1995) demonstrate that using any 
discretization algorithm outperforms the naïve Bayes algorithm with the normality 
assumption for continuous attributes. (Elomaa and Rousu, 1999) show that using 
optimal multi-splitting discretization algorithms does not bring a clear accuracy 
advantage over binary splitting in the case of decision trees. 

Although these evaluations bring many insights on the impact of discretization 
methods on classifiers, the contribution of the discretization is not always clear. For 
example, decision tree are composed of several modules including a preprocessing 
algorithm, a selection criterion, a stopping rule and a pruning algorithm. The 
discretization preprocessing step can be done once at the root of the tree or repeated 
at each node of the tree. It can use a binary-splitting strategy or a multi-splitting 
strategy (better partition, but more fragmented subsequent data). The performances 
of such classifiers result from complex interactions between these modules and 
strategies. 

In order to evaluate the intrinsic performance of the discretization methods and 
eliminate the bias of the choice of a specific induction algorithm, (Zighed et al. 
1999) consider each discretization method as an elementary inductive method that 
predicts the local majority class in each learned interval. They apply this approach 
on the waveform dataset (Breiman, 1984) to compare several discretization methods 
on the accuracy criterion.  

We extend this protocol as in (Boullé, 2003) and evaluate the elementary 
discretization inductive methods using all the continuous attributes contained in 
several datasets. This allows us to perform hundreds of experiments instead of at 
most tens of experiments. The discretizations are evaluated for three criteria: 
accuracy, robustness (test accuracy/train accuracy) and number of intervals. To 
facilitate the interpretation of the very large set of experimental results, we first 
proceed with a multi-criteria analysis based on gross global summaries of the 
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results. We then come to a more detailed analysis by the means of curves 
representing all the experiments sorted by increasing difference with the MODL 
method. Finally, we zoom into some specific experiments in order to provide both 
an illustration on some sample MODL discretizations and an explanation of typical 
differences of behavior between the MODL method and the alternative methods. In 
addition, we perform extensive experiments on artificial datasets designed to help 
understand the performance, bias and limits of each discretization method. 

 
4.2 The evaluated methods 

The discretization methods studied in the comparison are: 
- MODL 
- MDLPC (Fayyad and Irani, 1992) 
- BalancedGain (Kononenko et al., 1984) 
- Fusinter (Zighed et al, 1998) 
- Khiops (Boullé, 2004; Boullé, 2003) 
- ChiMerge (Kerber, 1991) 
- ChiSplit (Bertier and Bouroche, 1981) 
- Equal Frequency 
- Equal Width 

The MDLPC method is a greedy top-down split method, whose evaluation 
criterion is based on the Minimum Description Length Principle (Rissanen, 1978). 
At each step of the algorithm, the MDLPC evaluates two hypotheses (to cut or not 
to cut the interval) and chooses the hypothesis whose total encoding cost (model 
plus exceptions) is the lowest. The BalancedGain method exploits a criterion similar 
to the GainRatio criterion (Quinlan, 1993): it divides the entropy-based 
InformationGain criterion by the log of the arity of the partition in order to penalize 
excessive multisplits. This method can be embedded into a dynamic-programming 
based algorithm, as studied in (Elomaa and Rousu, 1999). The Fusinter method is a 
greedy bottom-up method that exploits an uncertainty measure sensitive to the 
sample size. Its criterion employs a quadratic entropy term to evaluate the 
information in the intervals and is regularized by a second term in inverse 
proportion of the interval frequencies. The Khiops algorithm uses the chi-square 
criterion in a global manner to evaluate all the intervals of a discretization, in a 
greedy bottom-up merge algorithm. Its stopping criterion has been enhanced in 
(Boullé, 2003) in order to provide statistical guarantees against overfitting: 
discretizations of independent attributes consist of a single interval with a user 
defined probability. The ChiMerge method is a greedy bottom-up merge method 
that locally exploits the chi-square criterion to decide whether two adjacent intervals 
are similar enough to be merged. The ChiSplit method, comparable to the ChiMerge 
method, uses a greedy top-down split algorithm. 

The MODL, MDLPC and BalancedGain methods have an automatic stopping 
rule and do not require any parameter setting. For the Fusinter criterion, we use the 
regularization parameters recommended in (Zighed et al., 1998). The Khiops 
probability parameter is set to 0.95. For the ChiMerge and ChiSplit methods, the 
significance level is set to 0.95 for the chi-square test threshold. The Equal Width 
and Equal Frequency unsupervised discretization methods use a number of intervals 
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set to 10. Since several instances can share the same descriptive value, the actual 
number of intervals can be less than expected in the case of the two unsupervised 
methods. 

The MDLPC, ChiMerge and ChiSplit criteria are local to two adjacent intervals: 
these methods cannot be optimized globally on the whole set of intervals. The 
Khiops criterion is global, but its stopping criterion is based on the statistic of the 
variation of the criterion during the merge process used in the algorithm. Thus, the 
Khiops search algorithm cannot be changed. The BalancedGain and the Fusinter 
method are the only other compared methods with a global criterion. In order to 
allow a fair comparison, we use exactly the same search algorithm (greedy bottom-
up heuristic followed by the post-optimization) both for the MODL, BalancedGain 
and Fusinter methods. 

 
4.3 Real data experiments 

In this section, we test the evaluated methods on real data. After introducing the 
datasets and the details of the evaluation protocol, we comment the aggregated 
results using a multi-criteria analysis. Then, we exhibit the relative differences 
between the methods on the complete set of experiments. Finally, we illustrate some 
sample discretization using histograms. 

 
4.3.1 The datasets 

We gathered 15 datasets from U.C. Irvine repository (Blake, 1998), each dataset 
has at least one continuous attribute and at least a few tens of instances for each 
class value in order to perform reliable tenfold cross-validations. Table 3 describes 
the datasets; the last column corresponds to the relative frequency of the majority 
class. 
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Table 3: Datasets 

Dataset Continuous Nominal Size Class Majority 
 Attributes Attributes  Values Class 
Adult 7 8 48842 2 76.07 
Australian 6 8 690 2 55.51 
Breast 10 0 699 2 65.52 
Crx 6 9 690 2 55.51 
German 24 0 1000 2 70.00 
Heart 10 3 270 2 55.56 
Hepatitis 6 13 155 2 79.35 
Hypothyroid 7 18 3163 2 95.23 
Ionosphere 34 0 351 2 64.10 
Iris 4 0 150 3 33.33 
Pima 8 0 768 2 65.10 
SickEuthyroid 7 18 3163 2 90.74 
Vehicle 18 0 846 4 25.77 
Waveform 21 0 5000 3 33.92 
Wine 13 0 178 3 39.89 

 
The discretizations are performed on the 181 continuous attributes of the 

datasets, using a ten times stratified tenfold cross-validation. We have re-
implemented the alternative discretization methods in order to eliminate any 
variance resulting from different cross-validation splits. In order to determine 
whether the performances are significantly different between the MODL method 
and the alternative methods, the t-statistics of the difference of the results is 
computed. Under the null hypothesis, this value has a Student’s distribution with 99 
degrees of freedom. The confidence level is set to 1% and a two-tailed test is 
performed to reject the null hypothesis. 

 
4.3.2 Multi-criteria analysis of the results 

The whole result tables related to the 181 attribute discretizations are too large to 
be printed in this paper. The results are summarized by datasets in the Appendix. 
Table 10 reports the geometric mean of the accuracy for all the attributes in each 
dataset, and the global summary by attribute and by dataset. Table 11 details the 
number of MODL significant wins and losses for each dataset and for all the 
attributes. Although these three global indicators look consistent, the summary by 
dataset seems preferable since it gives the same weight to each dataset whatever 
their number of attributes is. The robustness results are presented in Tables 12 and 
13, and the number of intervals results in Tables 14 and 15. 

In multi-criteria analysis, a solution dominates (or is non-inferior to) another one 
if it is better for all criteria. A solution that cannot be dominated is Pareto optimal: 
any improvement of one of the criteria causes a deterioration on another criterion. 
The Pareto surface is the set of all the Pareto optimal solutions. 

In order to analyze both the accuracy and robustness results, we report the 
dataset geometric means on a two-criteria plan in Figure 2, with the accuracy on the 
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x-coordinate and the robustness on the y-coordinate. Similarly, we report the 
accuracy and the number of intervals in Figure 3. Each point in these figures 
represents the summary of 18,100 experiments. An inspection of the results tables 
presented in the Appendix shows that a relative difference of about 0.5% between 
two summary points reflects significant differences between the two corresponding 
methods. The multi-criteria figures are thus reliable and informative: they allow us 
to clearly differentiate the behavior of almost all the methods.  
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Figure 2: Bi-criteria evaluation of the discretization methods for the accuracy and 
the robustness, using datasets geometric means 

 

0

1

2

3

4

5

6

7

8

9

10

66.0% 67.0% 68.0% 69.0% 70.0%

Accuracy

Intervals

MODL
MDLPC
BalancedGain
Fusinter
Khiops
ChiMerge
ChiSplit
EqualFrequency
EqualWidth

 
Figure 3: Bi-criteria evaluation of the discretization methods for the accuracy and 
the number of intervals, using datasets geometric means 

 
The accuracy is the most common evaluated criterion. Looking at this criterion 

shows that the four methods MODL, Fusinter, Khiops and ChiSplit perform equally 
well. They are followed by the MDLPC and EqualFrequency methods in a second 
group. Last come the ChiMerge method, the EqualWidth method and finally the 
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BalancedGain method. 
The robustness is an interesting criterion that allows to estimate whether the 

performance on the train data is a good prediction of the performance on the test 
data. The higher is the robustness, the most accurate will be a ranking of attributes 
based on their train accuracy. This can be critical in the case of classifiers such as 
decision trees that incorporate an attribute selection method to build the next node 
of the tree. The unsupervised methods exhibit a very good robustness in spite of 
their large number of intervals. They are not subject to over-fitting since they 
explore one single hypothesis to discretize the continuous attributes. The MODL, 
MDLPC and Khiops methods are as robust as the unsupervised methods. They are 
followed by the Fusinter and ChiSplit methods in a second group. At last, the 
BalancedGain and ChiMerge methods come with a far weaker robustness. 

The number of intervals criterion is potentially related to the simplicity of the 
discretizations. In the case of decision trees, discretizations with the same accuracy 
but with fewer intervals are preferable since they cause less fragmentation of the 
data in the sub-nodes of the tree. The MODL, MDLPC and Khiops methods clearly 
dominate the other methods on this criterion. Then come the BalancedGain, Fusinter 
and ChiSplit methods with about twice the number of intervals than that of the 
leading methods, followed by the unsupervised EqualFrequency and EqualWith 
methods and finally the ChiMerge method. 

If we take into account the three criterion together, the BalancedGain and 
ChiMerge methods are clearly dominated by all the other methods, followed by the 
EqualWith method. The EqualFrequency and MDLPC methods obtain similar 
results on accuracy and robustness, but the MDLPC methods produces far less 
intervals. Among the four most accurate methods, the Fusinter and ChiSplit 
methods are clearly dominated both on robustness and number of intervals. The 
MODL and Khiops methods are Pareto optimal: they dominate all the other methods 
on the three evaluated criteria. However, they cannot be distinguished from each 
other. 

 
4.3.3 Detailed differences between the methods 

In order to analyze the relative differences of accuracy for the 181 attributes in 
more details, we collect all the geometric mean ratios per attribute in ascending 
order. Figure 4 shows the repartition function of the relative differences of accuracy 
between the MODL method and the other discretization methods. Each point in this 
repartition function is the summary of 100 discretization experiments performed on 
the same attribute. The robustness results are presented in Figure 5 and the number 
of intervals results in Figure 6. 

Such repartition functions represent a convenient tool for the fine grain analysis 
of the differences between methods, in complement with the multi-criteria analysis 
carried out on the coarse dataset geometric means. A flat curve reflects two methods 
that do not differentiate on any of the experiments. A symmetric curve correspond 
to methods that globally perform equally well, but with differences among the 
experiences. An unbalanced curve reveals a situation of dominance of one method 
over the other, with insights on the intensity of the domination and on the size of the 
region of dominance. On the left of Figures 4 and 5, the MODL method is 
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dominated by the other methods and, on the right, it outperforms the other 
algorithms. It is the reverse situation for Figure 6. 

Concerning the accuracy criterion presented in Figure 4, the Khiops curve is 
almost flat, with about 80% of the attributes having exactly the same performances 
than the MODL method. The two other most accurate Fusinter and ChiSplit 
methods exhibit balanced but slightly dissymmetric curves: they dominate the 
MODL method in about 10% of the attributes and are dominated – less significantly 
- in about 20% of the attributes. Compared to the MDLPC method, the MODL 
method is between 0 and 3% less accurate in about 10% of the attributes, but is 
between 3 and 10% more accurate in about 10% of the attributes. The average 
relative difference of 0.7% between the MODL and MDLPC methods is thus 
significant and reflects potential large differences of accuracy on individual 
attributes. The other methods are far less accurate than the MODL method on a 
large proportion of the attributes. 
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Figure 4: Repartition function of the relative differences of accuracy between the 
MODL method and the other discretization methods 

 
Dealing with the robustness pictured in Figure 5, the MODL, MDLPC and 

Khiops methods demonstrate the same level of performance on almost all the 
attributes. The two unsupervised EqualFrequency and EqualWith methods have the 
same average level of robustness that the three preceding methods. However, they 
faintly dominate on 40% of the attributes and are more strongly dominated on 20% 
of the attributes. The two accurate Fusinter and ChiSplit methods are significantly 
dominated on a large proportion of the attributes. Finally, the remaining 
BalancedGain and ChiMerge methods are strongly dominated. The BalancedGain 
exhibits a very sharp transition for the right-most 20 % of the discretizations. In the 
last 10% (not shown in the figure for scalability reasons), the robustness of the 
MODL method goes between 25% and 60% higher than that of the BalancedGain 
method. 
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Figure 5: Repartition function of the relative differences of robustness between the 
MODL method and the other discretization methods 

 
Regarding the number of intervals displayed in Figure 6, the three robust 

MODL, MDLPC and Khiops methods express similar behaviour on a large majority 
of the attributes. All the other curves are heavily asymmetrical. The methods 
produce from 2 to 4 times more intervals on average, and up to one hundred times 
more intervals in the extreme cases. Once more, the BalancedGain curve 
distinguishes from the other curves with significantly smaller number of intervals 
that the MODL method in half of the discretization and the largest numbers of 
intervals for 15% of the attributes. 
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Figure 6: Repartition function of the relative differences of number of intervals 
between the MODL method and the other discretization methods 

 
The atypical behavior of the BalancedGain method requires some explanation. 

The BalancedGain criterion is the ratio of the InformationGain by the log of the 
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number of intervals. These two functions are increasing functions with respect to the 
number of intervals. According to their mutual position, the shape of the ratio 
function exhibit radically different behaviors. In the case of random or very noisy 
attributes, the InformationGain is almost null for small numbers of intervals and 
steadily increases toward its maximum value. The resulting BalancedGain ratio is an 
increasing function of the number of intervals, with subsequent discretizations 
containing very large numbers of intervals and having very poor robustness. On the 
opposite case of very informative attributes, the first split brings a lot of 
information. This translates the InformationGain first values upward and flatten the 
increase rate of the function. The ensuing BalancedGain ratio turns into a decreasing 
function of the number of intervals, with resulting discretizations having only two 
intervals and a very good robustness. This is equivalent to performing a binary-split 
using the InformationGain function. Between these two extreme situations, any 
behavior can theoretically be observed: this happens to be infrequent in the UCI 
datasets. 

The BalancedGain criterion, very similar to the GainRatio criterion used in C4.5 
(Quinlan, 1993), has been experimented in the context of decision trees in (Elomaa 
and Rousu, 1999). The reported prediction accuracy results are reasonably good, 
even though the multi-split discretizations produced by the BalancedGain method 
are not convincing. Indeed, the selection module of the decision tree always prefers 
the most informative attributes, which benefit from a very good binary-split (though 
a weak multi-split) and ignores the noisy attributes which suffer from severe over-
splitting. Thus, the complex machinery of a classifier can sometimes hide the effect 
of poor quality multi-split discretizations. 

 
4.3.4 Some sample discretizations 

In this section, we select four attributes among the 181 benchmark attributes, 
both to illustrate sample discretizations through histograms and to focus on 
qualitative differences between the evaluated methods. 

 
4.3.4.1 V1 attribute of the Waveform dataset 

This attribute corresponds to the least predictive attribute among the Waveform 
attributes. Figure 7 presents the waveform class frequency histogram using 20 bins, 
computed on the whole dataset. 
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Figure 7: Class frequency histogram for the V1 attribute of the Waveform dataset 

 
The three classes look equidistributed, meaning that the V1 attribute holds little 

conditional information about the class density. The results obtained by the 
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discretization methods during the ten times tenfold cross-validation are reported in 
Table 4. The three robust MODL, MDLPC and Khiops methods build exactly one 
interval. 

Table 4: Mean and standard deviation discretization results for the V1 attribute of 
the Waveform dataset 

Method  Accuracy  Robustness  Intervals 
  Mean Std Dev  Mean Std Dev  Mean Std Dev 

MODL  33.9 ± 0.1  100.0 ± 0.3  1.0 ± 0.0 
MDLPC  33.9 ± 0.1  100.0 ± 0.3  1.0 ± 0.0 
BalancedGain  34.6 ± 2.0  70.1 ± 4.4  431.0 ± 6.7 
Fusinter  33.8 ± 1.8  91.9 ± 5.3  8.3 ± 1.1 
Khiops  33.9 ± 0.1  100.0 ± 0.3  1.0 ± 0.0 
ChiMerge  33.7 ± 2.0  86.0 ± 5.6  40.2 ± 5.4 
ChiSplit  33.4 ± 1.0  95.5 ± 4.1  5.0 ± 2.8 
EqualFrequency  33.1 ± 1.9  93.0 ± 5.7  10.0 ± 0.0 
EqualWidth  33.1 ± 1.9  94.4 ± 5.8  10.0 ± 0.0 

 
4.3.4.2 V7 Attribute of the Waveform dataset 

This attribute corresponds to the most predictive attribute among the Waveform 
attributes. Figure 8 presents the class frequency histogram and Table 5 the results of 
the discretizations. 
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Figure 8: Class frequency histogram for the V7 attribute of the Waveform dataset 

 

Table 5: Mean and standard deviation discretization results for the V7 attribute of 
the Waveform dataset 

Method  Accuracy  Robustness  Intervals 
  Mean Std Dev  Mean Std Dev  Mean Std Dev 

MODL  57.5 ± 1.2  99.9 ± 2.2  6.0 ± 0.0 
MDLPC  57.4 ± 1.2  99.9 ± 2.2  6.0 ± 0.2 
BalancedGain  57.4 ± 1.2  99.9 ± 2.2  2.0 ± 0.0 
Fusinter  57.4 ± 1.2  99.8 ± 2.3  6.4 ± 0.6 
Khiops  57.5 ± 1.1  99.7 ± 2.2  6.5 ± 0.9 
ChiMerge  56.6 ± 1.4  95.3 ± 2.7  55.9 ± 6.4 
ChiSplit  57.3 ± 1.3  99.1 ± 2.5  14.8 ± 2.5 
EqualFrequency  57.5 ± 1.1  100.0 ± 2.2  10.0 ± 0.0 
EqualWidth  57.0 ± 1.2  100.0 ± 2.4  10.0 ± 0.0 

 
The MODL methods produces exactly 6 intervals (with a null variance). Figure 
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9 reports the class conditional density histogram corresponding to the MODL 
discretization build on the whole Dataset. The discretization behaves like a density 
estimator, with a focus on the variations of the class densities. The MDLPC, 
Fusinter and Khiops methods build approximatively the same intervals and obtain 
the same level of performances on accuracy and robustness. The BalancedGain 
method produces a binary-split. The other methods builds too many intervals. 
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Figure 9: Class conditional density histogram for the V7 attribute of the Waveform 
dataset, based on the MODL discretization 

 
4.3.4.3 A30 attribute of the Ionosphere dataset 

A close look at the result tables presented in the Appendix indicates a special 
behavior of the Ionosphere dataset, where the MDLPC method is largely dominated 
by the other methods. We chose the A30 attribute as one of the most illustrative 
attributes to explain this behavior. Figure 10 presents the class frequency histogram 
and Table 6 the results of the discretizations. 
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Figure 10: Class frequency histogram for the A30 attribute of the Ionosphere dataset 

 

Table 6: Mean and standard deviation discretization results for the A30 attribute of 
the Ionosphere dataset 

Method  Accuracy  Robustness  Intervals 
  Mean Std Dev  Mean Std Dev  Mean Std Dev 

MODL  80.6 ± 5.9  97.9 ± 7.8  5.0 ± 0.0 
MDLPC  73.2 ± 5.9  99.4 ± 8.8  3.0 ± 0.3 
BalancedGain  72.4 ± 6.8  76.0 ± 7.5  78.3 ± 20.4 
Fusinter  80.5 ± 5.9  97.8 ± 7.8  5.0 ± 0.1 
Khiops  80.6 ± 5.9  97.9 ± 7.8  5.0 ± 0.0 
ChiMerge  75.5 ± 7.1  86.3 ± 8.9  33.2 ± 5.6 
ChiSplit  80.9 ± 5.6  98.2 ± 7.5  6.0 ± 1.0 
EqualFrequency  73.3 ± 7.0  99.8 ± 10.1  9.0 ± 0.0 
EqualWidth  70.7 ± 6.5  100.2 ± 10.2  10.0 ± 0.0 
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The four more accurate methods build between 5 and 6 intervals, whereas the 
MDLPC methods produces only 3 intervals. Figure 11 shows the class conditional 
density histogram obtained with the MODL discretization. Two density peaks are 
identified in the borders of the value domain. These peaks are also identified by the 
MDLPC method, with exactly the same bounds. The third density peak, in the 
center, is so thin that it cannot be discovered on the regular class frequency 
histogram pictured in Figure 10. Nevertheless, it contains 37 instances and thus 
corresponds to a reliable class density estimation. This kind of pattern is easily 
detected by the bottom-up methods, and by the ChiSplit method that tends to 
produce too many intervals. It is harder to discover for the MDLPC top-down 
algorithm since it requires two successive splits with the first one not very 
significant. 
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Figure 11: Class conditional density histogram for the A30 attribute of the 
Ionosphere dataset, based on the MODL discretization 

 
4.3.4.4 V11 attribute of the Wine dataset 

This attribute corresponds to one the largest loss in accuracy for the MODL 
method when compared to the other accurate Fusinter and ChiSplit methods. Figure 
12 presents the class frequency histogram and Table 7 the results of the 
discretizations. 
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Figure 12: Class frequency histogram for the V11 attribute of the Wine dataset 
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Table 7: Mean and standard deviation discretization results for the V11 attribute of 
the Wine dataset 

Method  Accuracy  Robustness  Intervals 
  Mean Std Dev  Mean Std Dev  Mean Std Dev 

MODL  56.8 ± 7.1  93.4 ± 14.2  2.9 ± 0.6 
MDLPC  58.8 ± 8.1  94.9 ± 14.2  2.8 ± 0.9 
BalancedGain  58.6 ± 6.7  98.8 ± 12.1  2.0 ± 0.0 
Fusinter  66.3 ± 9.9  94.7 ± 15.7  4.7 ± 0.7 
Khiops  58.7 ± 6.7  96.2 ± 13.9  2.3 ± 0.8 
ChiMerge  62.0 ± 10.4  89.4 ± 16.7  6.2 ± 1.1 
ChiSplit  62.5 ± 10.5  91.0 ± 16.5  6.5 ± 0.7 
EqualFrequency  62.4 ± 9.8  94.8 ± 16.1  9.5 ± 0.5 
EqualWidth  63.0 ± 11.1  97.2 ± 18.7  9.1 ± 0.3 

 
The Wine Dataset contains 178 instances. In a tenfold cross-validation, there are 

less than 20 instances in the test set: one more correctly classified instance brings a 
5% increase in accuracy. This reflects in Table 7 with important differences in 
accuracy, but large standard deviations. Figure 13 shows that the MODL method 
builds only three intervals: there are not enough instances to build new reliable 
intervals. 
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Figure 13: Class conditional density histogram for the attribute V11 of the Wine 
dataset, based on the MODL discretization 

 
Figure 14 shows the five intervals of the Fusinter discretization. The last interval 

is a mixture of classes, since the Fusinter criterion tries to compromise class 
discrimination and minimum frequency per interval. 

 

0

0.2

0.4

0.6

0.8

1

0.5 1 1.5

V11

Prob 1 2 3

 
Figure 14: Class conditional density histogram for the V11 attribute of the Wine 
dataset, based on the Fusinter discretization 

 
Figure 15 shows the seven intervals of the ChiSplit discretization. The class 

densities are more contrasted than with the Fusinter method, but the methods suffers 
from over-fitting. 
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Figure 15: Class conditional density histogram for the V1 attribute of the Wine 
dataset, based on the ChiSplit discretization 

 
4.4 Synthetic data experiments 

In this section, we focus on the tested supervised discretization methods and try 
to characterize their bias and performances. We use synthetic datasets, which allow 
comparing the tested discretization methods with an oracle that knows the true class 
distribution. 

 
4.4.1 Noise pattern 

The purpose of the noise pattern experiment is to evaluate the noise resistance of 
the discretization methods, under variation of the sample size. In the case of pure 
noise data, the oracle discretization builds a single interval, meaning that there is no 
class information in the explanatory attribute. This experiment is strongly biased in 
favor of the top-down discretization heuristics, since they just have to reject one 
single split to be as good as the oracle. On the contrary, the bottom-up methods have 
to accept many merge decisions before they can produce a single interval 
discretization. 

The noise pattern dataset consists of an explanatory continuous attribute 
independent from the class attribute. The explanatory attribute is uniformly 
distributed on the [0, 1] numerical domain and the class attribute consists of two 
equidistributed class values. The evaluated criterion is the number of unnecessary 
intervals, since the test accuracy is always 0.5 whatever the number of intervals is in 
the discretizations. The experiment is done on a large number of sample sizes 
ranging from 100 instances to 100,000 instances. In order to obtain reliable results, 
it is performed 10,000 times. Figure 16 presents the average unnecessary interval 
number obtained by the tested discretization methods, for different sample sizes. 
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Figure 16: Mean of the unnecessary interval number of the discretizations of an 
explanatory attribute independent from the class attribute 

 
The BalancedGain, ChiMerge and ChiSplit methods always produce more than 

one interval, and the number of intervals increases with the sample size. The 
Fusinter method builds between 5 and 10 intervals with a maximum when the 
sample size is about 5,000. The Khiops method is designed to produce one single 
interval with probability greater than 0.95 when the explanatory attribute is 
independent from the class attribute. This is confirmed by the experiment with an 
average unnecessary interval number ranging from 0.02 to 0.08 (even a 0.1 
unnecessary interval number corresponds to an average 5% of multi-interval 
discretizations, since most of these discretizations consist of 3 intervals). The 
MODL and MDLPC method are very resistant to noise and almost always produce a 
single interval. The experiments have been performed 100,000 times for these two 
methods in order to better approximate the result curves in figure 16. The 
percentage of multi-interval discretization is about 1% of the cases for sample size 
100; it decreases with the sample size with an approximate rate of 1/n. This 
behavior seems consistent since the probability of finding an information pattern in 
a randomly generated attribute decreases with the sample size. In the few cases of 
multi-interval discretization, the MDLPC always constructs two intervals, since it is 
strongly biased by its top-down algorithm in favor of information patterns in the 
borders of the numerical domain. On the opposite, the MODL method builds 
discretization containing either two or three intervals, since its bottom-up heuristic 
allows to identify information patterns surrounded by two noise patterns. This 
behavior explains why the average unnecessary interval number is slightly larger for 
the MODL method than for the MDLPC method. 
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4.4.2 Crenel pattern 
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Figure 17: Mean interval number for the discretization of the "crenel pattern" 

( )( )xSinusSignClass π100= on the numerical domain [0, 1], in a noise free context 
 
The crenel pattern experiment is based on a more complex dataset family, built 

with a "crenel pattern". The explanatory attribute is uniformly distributed on the [0, 
1] numerical domain and the class attribute consists of two equidistributed class 
values '+' and '-' which alternate on the explanatory value x according to the function 

( )( )xSinusSignClass π100= . In a noise free context, the optimal discretization 
consists of 100 intervals whose bounds are equidistant on the [0, 1] numerical 
domain. For small sample sizes, where the number of instances is comparable to the 
optimal interval number, the distribution of the class values on the numerical 
domain is similar to noise. In this case, the discretization methods should produce a 
single interval, related to a test error of 0.5. When the sample size increases, each 
optimal interval contains more and more instances and can correctly be identified by 
the discretization methods. Thus, the test error asymptotically decreases towards 0 
when the sample size increases. The experiment points out the threshold of the 
sample size above which all the optimal intervals are correctly detected. 

The experiment is performed for a large number of sample sizes ranging from 
100 instances to 100,000 instances. The evaluated criterion is the mean of the 
number of intervals on 1,000 randomly generated samples, for each sample size. We 
can notice that the 1R discretization method (Holte, 1993) which produces one 
interval for each sequence of instances belonging to the same class is optimal for 
this noise-free problem. The results for the tested discretization methods are 
displayed in figure 17. 

The BalancedGain and ChiMerge methods which produce many intervals (cf. 
UCI experiments) are favored in this noise free context: they are the first methods 
that correctly identifies the 100 intervals, with about 500 instances. The Fusinter, 
ChiMerge and ChiSplit methods overfit the data with too many intervals for very 
small sample sizes. On the opposite, the MODL, Khiops and MDLPC methods 
produce one single interval for small sample sizes. The transition between 1 interval 
and 100 intervals happens very sharply at sample size 700 for the MODL method. 
The MDLPC, Fusinter and Khiops methods need between 2,000 and 3,000 instances 
to identify all the intervals. 
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Figure 18: Mean interval number for the discretization of the "crenel pattern" 

( )( )xSinusSignClass π100= , with 10% misclassified instances 
 
The same experiment is performed in a noisy context, with 10% of randomly 

misclassified instances. The results are displayed in figure 18. Once again, the 
BalancedGain, Fusinter, ChiMerge and ChiSplit methods overfit the data with too 
many intervals, but the Fusinter method does not asymptotically build more than the 
necessary number of intervals. The BalancedGain method, whose criterion 
compromises the InformationGain and the number of intervals owing to a ratio, 
displays an abrupt change in its behavior beyond 30000 instances. The ChiSplit 
method produces several times the number of necessary intervals when the sample 
size is large. However, the difference in test accuracy (shown in Figure 19) between 
the ChiSplit method and the robust methods is asymptotically small. The robust 
methods MODL, MDLPC and Khiops produce one single interval for small sample 
sizes and identify the correct intervals for large sample sizes. The transition is still 
abrupt for the MODL method, at sample size 1,000, whereas it is smoother for the 
other methods. The correct discretization is found at sample size 3,000 for the 
Khiops method, 4000 for the Fusinter method and 7,000 for the MDLPC method. 
When the sample size increases, the MDLPC method slightly overfits the data, with 
discretizations containing about 103 intervals for sample size 100,000.  

To summarize, the MODL method is both robust and sensitive. It produces as 
few intervals as the most robust methods when the sample size is small, and as 
many interval as necessary once there is enough instances in the sample. 
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Figure 19: Mean distance to the true test error for the discretization of the "crenel 
pattern" ( )( )xSinusSignClass π100= , with 10% misclassified instances 

 
4.4.3 Peak pattern 

The peak pattern experiment focuses on the detection of a pure interval (with 
instances belonging to one single class) hidden in the center of a noise attribute. In 
order to prevent superfluous over-splitting, the explanatory attribute consists of only 
three values: one for the first noisy interval, one for the center pure interval and one 
for the last noisy interval. The class attribute is composed of two classes. The pure 
interval contains only instances of the first class and the other intervals share the 
remaining instances with the same class proportion. The experiment points out the 
threshold of the peak interval size above which the pattern is correctly identified. 
Three intervals are necessary when the peak is in the center, and two intervals when 
the peak is in the head. 

In order to get an idea of the frequency of such patterns in randomly distributed 
attributes, we propose below an approximation of such a threshold. Let 1p  and 2p  
be the two class probabilities, n the number of instances in the sample and k the size 
of the peak interval. The probability that a sequence of k instances contains only 
instances of the first class is 1

kp . If k n<< , there are about n such sequences in the 
sample. Although they intersect on a small scale, we assume that they are 
independent for approximation reasons. The probability of observing no pure 
sequence of k instances in the sample is: 

( )11
nkp− . 

Thus, observing at least one pure sequence of length k in a random sample of 
size n becomes probable beyond ( ) ( )1~ log logk n p− . 

Figure 20 displays the threshold of the pure interval size for the evaluated 
discretizations under variation of the sample size, when the two classes are 
equidistributed. The UnbalancedGain method always produces multi-split 
discretizations, even when there is one single instance in the peak interval. The 
ChiMerge and ChiSplit methods are identical when the peak is in the head: they 
overfit the data. When the peak is in the center, the ChiSplit method suffers from its 
top-down algorithm and requires an increasing number of instances with the sample 
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size: it needs about 10 times the theoretical peak size approximation for sample size 
10000. The Fusinter method exploits a regularization technique that penalizes 
intervals with small frequency. The penalty is heuristically adjusted, resulting in an 
overfitting behavior for small sample sizes and an underfitting behavior for larger 
sample sizes, wherever the peak is located. The MODL, MDLPC and Khiops 
methods exhibit a very similar behavior in the case of a head peak, quite close from 
the theoretical threshold approximation. When the peak is in the center, the MDLPC 
methods has the same drawback that the ChiSplit method, due to its top-down 
approach. The Khiops methods has exactly the same behavior for head and center 
peaks, whereas the MODL methods requires slightly larger peaks in the center, 
when more complex discretizations (with three intervals instead of two) are 
necessary. 
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Figure 20: Threshold for the detection of a pure peak interval hidden into a noise 
attribute, under variation of the sample size 

 
We exploit the same experiment to study the asymptotic behavior of the 

methods, when the class distribution becomes more and more unbalanced. The 
Khiops, ChiMerge and ChiSplit methods are based on chi-square statistics. The chi-
square value is not reliable to test the hypothesis of independence if the expected 
frequency in any cell of the contingency table is less than some minimum value. 
This is equivalent to a minimum frequency constraint for each row of the 
contingency table. The tuning of this constraint is a compromise between reliability 
and fine pattern detection: no optimal trade-off can be found. 

Figure 21 displays the threshold of the pure interval size for the evaluated 
discretizations under variation of the probability of first class, for a sample size 
fixed to 10000 instances. In addition to the theoretical threshold approximation, we 
report the chi-square theoretical minimum interval size that corresponds to an 
expected frequency of at least 1 instance in each cell of the contingency table. The 
most notable result is a quasi-identical behavior of the MODL and MDLPC methods 
in the case of head peaks, very close from the theoretical threshold approximation. 
The chi-square based methods ChiMerge and ChiSplit do no exploit a minimum 
frequency constraint: their use of the chi-square statistics is not reliable as soon as 
the first class probability is lower than 0.1. The Khiops method heuristically 
incorporates the minimum frequency constraint: it is still both too aggressive to get 
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a reliable use of the chi-square statistics and to conservative to allow fine grain 
detection when the class distribution is unbalanced. The top-down based algorithms 
MDLPC and ChiSplit fail to correctly identify pure peaks when they are located in 
the center. The MODL method obtains the finest results for peak detection wherever 
they are located. In extremely unbalanced class distributions, the MODL method 
requires only two instances in head pure peak intervals and fours instances in center 
pure peak intervals. 
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Figure 21: Threshold for the detection of a pure peak interval hidden into a noise 
attribute, under variation of the first class population, for sample size 10000 

 
4.4.4 Discussion 

The experiments on synthetic data are a way of characterizing each 
discretization methods and its bias. Some of these methods are very robust to noise, 
some of them are very accurate in noise free context. It is interesting to see that the 
widely used accuracy criterion is not suitable to precisely evaluate and compare 
different inductive methods. It does not penalize the methods which build patterns 
from noise. Furthermore, the methods which overfit the data have a minor penalty 
when the detected pattern is close to noise and a large reward when it is a true 
pattern. Finally, the accuracy criterion does not clearly favor the methods which are 
more and more accurate as the sample size increases. The difference in accuracy is 
often small while the difference in correctness of the model might be important. 
These synthetic experiments are a first step towards a better evaluation of the 
robustness of the discretization methods and their ability to find complex patterns 
even in a noisy context. There is still a need for a more complete set of synthetic 
benchmarks and perhaps for the design of new criteria in order to consistently 
evaluate the inductive methods on real datasets. 

Overall, the synthetic experiments enlighten a large diversity of discriminating 
behaviors among the evaluated methods. The two MDLPC and Khiops methods are 
the closest from the MODL method. Compared with the MDLPC method, the 
MODL method extends the recursive binary-split approach towards a true multi-
split discretization schema and largely augments the capacity of fine grain pattern 
detection. Compared with the Khiops method, the MODL method does not require 
any parameter for the level of resistance to noise and removes the asymptotical 
limitations caused by the use of chi-square statistics. 
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5 Optimization criterion versus search strategy 

In this section, we study the relative contribution of the optimization criterion 
versus the search strategy to the quality of the discretizations. We first focus on 
computation time and its relation to the numerical efficiency of the optimization. 
We then examine the connection between the criterion optimality and the 
discretizations quality. 

 
5.1.1 Computation times of the evaluated algorithm 

The evaluated discretization methods have the same computational complexity 
of O(n log(n)). They first sort the attribute values and identify boundary instances in 
a preprocessing step. The time efficiency of the methods mainly relies on the search 
direction (top-down or bottom-up), the simplicity of the mathematical criterion and 
the use of a post-optimization algorithm. The actual running time on real datasets 
depends on the final number of intervals found in the attribute discretizations. 

The UCI dataset experiments are conducted on a PC with a Pentium IV 2.5 Ghz, 
using the ten times tenfold cross-validation protocol. Figure 22 reports the average 
discretization running time per attribute (in seconds) for the ten larger datasets, 
ranging from 50000 instances on the left to 700 instances on the right. All the 
supervised discretization methods obtain comparable running times. They are on 
average between 50% and 150% longer than the unsupervised discretization 
methods. 
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Figure 22: Computation time of the discretization methods on ten UCI datasets 

 
5.1.2 Computation time versus criterion optimality 

The MODL, BalancedGain and Fusinter methods are the only evaluated methods 
whose criterion can be globally optimized. The other methods MDLPC, ChiMerge 
and ChiSplit use a recursively applied binary-split criterion. The Khiops method 
exploits a regularization technique that is intrinsically coupled with its search 
strategy. 

The UCI experiments are completed with the three MODL, BalancedGain and 
Fusinter methods, using three search strategies: the greedy bottom-up optimization 
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algorithm, the new evaluated search algorithm that incorporates an additional post-
optimization step and the optimal dynamic-programming based algorithm. In order 
to obtain all the results in less than one week of CPU time, the maximum number of 
intervals is set to 100 for all the methods and the tenfold cross-validation is 
performed just one single time. Figure 23 presents the average discretization 
running times per attribute. The results show a consistent behavior of the algorithms 
for the three criteria. The post-optimization algorithm presents a 20% running time 
overhead compared to the greedy algorithm. As expected, the optimal algorithm, 
whose computational complexity is O(n3), requires much more running time than 
the two search heuristics. 
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Figure 23: Computation time of the MODL, BalancedGain and Fusinter 
discretization methods on ten UCI datasets, using the optimal algorithm (O), the 
new evaluated algorithm and the greedy algorithm (G) 

 
We report in Table 8 the efficiency of the three search strategies, in terms of 

their ability to reach the optimal solution or to improve the relative distance to the 
optimal solution. The "Time" column in Table 8 stands for the geometric mean (by 
dataset) of the computation time normalized by the Equal Frequency computation 
time. For example, the MODL method with the post-optimization algorithm takes 
on average 1.7 more computation time than the Equal Frequency algorithm. The 
"Diff" column represents the mean (by attribute) of the relative distance of the 
method criterion to the optimal solution 
( )algorithm optimal optimalcriterion criterion criterion− . The "% opt" column presents 
the percentage of optimal solution found by the algorithm. 

The results are still consistent for the three evaluated criteria. The post-
optimization algorithm reaches the optimal solution about twice as many times than 
the greedy algorithm and the relative distance to the optimal solution is improved by 
a factor 100. From a strict optimization point of view, the post-optimization 
algorithm radically improves the results of the greedy algorithm with a small 
computational overhead. 
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Table 8: Dataset geometric mean of the normalized computation time (Time), mean 
of the relative distance to the optimal solution (Diff) and percentage of optimal 
solution (% opt) for the MODL, BalancedGain and Fusinter discretization methods, 
using three search strategies 

Algorithm MODL BalancedGain Fusinter 
 Time Diff % opt Time Diff % opt Time Diff % opt 
Optimal 82.3 0.0 100% 161.7 0.0 100% 64.0 0.0 100% 
Post-opt 1.7 8.6E-5 95% 2.2 2.4E-3 90% 1.7 8.3E-5 91% 
Greedy 1.3 3.8E-3 55% 1.9 1.3E-1 41% 1.4 4.0E-3 40% 

 
5.1.3 Impact on the quality of the discretizations 

Reaching the optimal value of a mathematical criterion does not mean finding 
the best discretization. The notion of best discretization is hard to define: we restrict 
this to the evaluation of the accuracy, robustness and number of intervals of the 
discretizations, as reported in Table 9. The optimal and post-optimized search 
strategies obtain statistically the same results: there are only 5 significant differences 
(not reported here) between the two search strategies among 1629 individual 
comparison experiments (181 attributes, 3 evaluations, 3 criteria). Compared to the 
greedy search strategy, they both bring a slight enhancement in accuracy and 
robustness, and a more significant reduction in the number of intervals. The Fusinter 
criterion is the less sensitive one to the quality of the optimization. The 
BalancedGain criterion highly benefits from the optimization by escaping from local 
optima with numerous intervals in the case of informative attributes. 

Overall, the evaluated quality of the discretizations is improved by better search 
strategies for all the criteria. However, the criterion is far more important than the 
search strategy to obtain high quality discretizations. 

 

Table 9: Dataset geometric means of the accuracy, robustness and number of 
intervals for the MODL, BalancedGain and Fusinter discretization methods, using 
three search strategies 

Algorithm  MODL BalancedGain Fusinter 
 Accur. Robus. Int. Accur. Robus. Int.  Accur

. 
Robus

. 
Int. 

Optimal 69.14 98.17 2.62 66.42 94.83 4.12  69.11 96.43 4.37 
Post-opt 69.18 98.23 2.60 66.48 94.84 4.19  69.16 96.57 4.27 
Greedy 69.06 98.09 2.80 66.01 90.18 11.04  68.99 96.52 4.29 

 
5.1.4 Impact on the quality of the explanation 

In the case of the MODL criterion, we can propose an interpretation of the 
improvements in the optimized criterion owing to Theorem 5. The absolute 
difference between the evaluation of a discretization and the optimal evaluation is 
directly connected to the probability that the discretization explains the data. 
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Theorem 5: Let M be a MODL discretization of a sample data D, Cost(M) its 
evaluation with the MODL criterion. Then optimal discretization Mopt is a more 
probable MODL explanation of D than M the with the following factor: 

( ) ( )( )exp optCost M Cost M− . 

Proof: 
The probability that M explains D is ( )p M D . According to the proof of 

Theorem 1, this probability is related to the MODL evaluation cost by: 
( ) ( ) ( )( )logCost M p M D p D= − . 

Thus, 

( )
( ) ( ) ( )log

opt
opt

p M D
Cost M Cost M

p M D

 
  = −
 
 

. 

The claim follows. ■ 
 
In Figure 24, we report the distance to the optimal discretization for the 1810 

discretization performed on the UCI datasets. For example, with the greedy 
heuristic, 20% of the discretizations are at least 10 times less probable than the 
optimal discretization to explain the data. The quality of the discretization-based 
explanation of the data is thus significantly improved by the post-optimization 
algorithm. 
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Figure 24: Repartition function of the distance to the optimal discretization 
evaluated on 1810 discretizations, for the new evaluated algorithm and the greedy 
heuristic (G) 

 
We finally compare the two search heuristics in the case of the noise pattern 

experiment. The optimal algorithm is not applicable due to the size of the datasets 
and to the number of repetitions of the experiments. Figure 25 shows no differences 
between the two search strategies for the BalancedGain and Fusinter criteria. On the 
opposite, the change of behavior is very important for the MODL criterion. The 
greedy algorithm produces on average 0.2 unnecessary intervals instead of almost 
exactly the expected number of intervals for the post-optimized algorithm. 

This last experiments enlightens the main conclusions of this section. The 
criterion clearly comes first, before the search strategy. The impact of better 
optimized discretization is small on common evaluations such as accuracy, 
robustness or number of intervals. It is still important when the quality of the 
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explanation of the data is considered. 
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Figure 25: Mean of the unnecessary interval number of the discretizations of an 
explanatory attribute independent from the class attribute, for the post-optimized 
search strategy and the greedy algorithm (G) 

6 Conclusion 

The MODL discretization method takes advantage of the precise definition of a 
family of discretization models with a general prior. This provides a new evaluation 
criterion which is minimal for the Bayes optimal discretization, i.e. the most 
probable discretization given the data sample. A new optimization heuristic is 
proposed in this paper to optimize the discretization with super-linear time 
complexity. This algorithm allows to find the optimal discretization in most cases. 

Extensive evaluations both on real and synthetic data enlighten the key features 
of the MODL method. It is time efficient and does not require any parameter setting. 
It builds discretizations that are both robust and accurate, resistant to noise and 
sensitive to fine grain patterns. It correctly identifies complex patterns provided that 
there is enough data, needing less data than the alternative robust methods. It 
produces fewer intervals than most alternative accurate methods and has no 
asymptotic limitation. 

The most valuable characteristic of the MODL method potentially resides in the 
robust explanation of the data it provides. Even though this is restricted to choice of 
its model space and limited by the bias of its model prior, the MODL method builds 
the most probable discretization-based explanation of the data. 

In future work, we plan to extend this approach to the problem of grouping the 
values of categorical attributes. 
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Appendix 

Table 10: Geometric mean of the accuracy per attribute discretization 

Dataset MOD
L 

MDLPC BGain Fusin Khiop
s 

ChiM ChiS EqFr EqWi 

Adult 77.34 77.33 74.07 77.27 77.30 75.63 77.32 76.62 76.76 
Australian 64.31 64.39 62.40 63.46 64.42 63.86 64.31 65.14 60.72 
Breast 85.35 85.55 85.08 85.40 85.35 85.12 85.56 85.24 85.63 
Crx 64.41 64.46 62.39 63.41 64.55 63.45 64.49 64.99 60.62 
German 70.05 70.00 69.98 70.03 70.04 69.99 70.02 69.90 70.07 
Heart 63.57 63.19 63.26 62.68 63.62 62.77 63.00 64.12 63.09 
Hepatitis 79.13 79.15 75.98 79.42 79.52 77.92 78.85 80.15 79.99 
Hypothyroid 96.00 96.03 95.20 96.04 96.04 96.02 96.02 95.21 95.40 
Ionosphere 79.64 77.37 76.21 79.19 79.40 75.73 79.23 73.93 73.39 
Iris 76.86 72.91 60.92 77.68 75.98 75.49 76.54 73.42 74.69 
Pima 66.10 65.98 64.94 66.01 66.12 65.97 66.08 66.50 66.31 
SickEuthyroi
d 

91.29 91.29 91.24 91.28 91.30 91.28 91.31 91.18 90.72 

Vehicle 40.21 39.58 35.72 40.53 40.56 40.52 40.82 39.75 39.95 
Waveform 48.71 48.77 48.64 48.57 48.75 47.92 48.51 48.79 48.52 
Wine 58.97 58.74 55.44 61.21 58.66 58.26 59.15 60.23 59.48 

 

All attributes 66.24 65.67 63.86 66.28 66.25 65.26 66.22 65.35 64.88 
All datasets 69.14 68.67 66.26 69.17 69.14 68.38 69.12 68.77 68.04 

 



MODL: A BAYES OPTIMAL DISCRETIZATION METHOD   39 

Table 11: Number of MODL significant wins and losses for the accuracy criterion 

Dataset MDLPC BGain Fusin Khiop
s 

ChiM ChiS EqFr EqWi 

Adult 2/0 5/0 2/0 4/0 3/2 2/2 2/0 3/0 
Australian 1/2 2/1 3/1 1/1 2/0 3/2 0/4 5/1 
Breast 0/1 2/1 2/2 1/1 2/2 1/2 2/2 1/2 
Crx 1/2 2/1 4/1 1/1 4/0 2/2 0/4 5/1 
German 1/0 1/0 1/1 0/0 1/0 1/1 2/0 1/2 
Heart 1/0 1/0 1/0 0/0 3/0 2/0 2/3 2/1 
Hepatitis 0/0 3/1 3/2 0/1 3/3 2/2 0/2 3/3 
Hypothyroid 1/2 4/0 1/1 1/2 3/2 2/2 3/0 3/0 
Ionosphere 17/2 23/1 14/2 5/5 29/0 16/2 29/0 26/0 
Iris 2/0 4/0 0/1 1/1 1/1 1/0 2/0 2/1 
Pima 1/1 3/1 2/2 1/1 2/2 1/1 1/2 3/2 
SickEuthyroi
d 

0/0 2/0 1/0 0/0 3/2 2/1 1/0 2/0 

Vehicle 8/1 14/0 4/5 3/6 4/5 3/7 7/5 6/6 
Waveform 2/4 4/9 6/2 1/2 14/0 11/1 3/7 9/5 
Wine 4/3 6/2 0/7 5/3 3/1 4/2 1/3 3/5 

 

Total 41/18 76/17 44/27 24/24 77/20 53/27 55/32 74/29 
 

Table 12: Geometric mean of the robustness per attribute discretization 

Dataset MOD
L 

MDLPC BGain Fusin Khiop
s 

ChiM ChiS EqFr EqWi 

Adult 99.99 99.99 90.63 100.0 99.96 94.98 99.91 100.0 100.0 
Australian 97.12 97.55 84.95 94.18 97.40 92.34 96.10 98.88 99.00 
Breast 99.74 99.80 95.20 98.67 99.46 96.91 99.18 99.67 99.69 
Crx 97.35 97.68 84.94 94.20 97.55 91.66 96.39 98.65 98.81 
German 99.92 99.89 99.66 99.81 99.91 99.71 99.79 99.84 99.86 
Heart 98.78 98.43 92.69 94.22 98.85 93.45 96.22 97.50 97.00 
Hepatitis 98.40 99.25 90.26 96.71 98.42 92.70 97.11 99.39 98.23 
Hypothyroid 99.91 99.91 99.94 99.89 99.86 99.79 99.84 100.0 99.99 
Ionosphere 97.57 97.77 90.52 96.66 97.63 87.36 96.06 98.65 98.87 
Iris 96.94 94.55 97.14 97.49 96.76 95.54 96.49 94.92 96.27 
Pima 99.14 98.92 92.57 97.23 99.04 95.24 97.55 98.92 98.10 
SickEuthyroi
d 

99.96 99.96 99.94 99.95 99.94 99.78 99.93 100.0 99.99 

Vehicle 94.87 95.16 96.10 92.40 95.40 90.98 92.64 93.82 94.47 
Waveform 98.68 98.76 94.30 96.65 98.68 91.99 96.76 98.12 98.57 
Wine 94.29 95.30 96.49 91.17 93.31 86.18 89.65 92.84 93.13 

 

All attributes 98.01 98.14 94.03 96.46 98.00 92.83 96.54 97.93 98.06 
All datasets 98.16 98.18 93.57 96.58 98.13 93.82 96.87 98.05 98.11 
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Table 13: Number of MODL significant wins and losses for the robustness criterion 

Dataset MDLPC BGain Fusin Khiop
s 

ChiM ChiS EqFr EqWi 

Adult 0/0 2/0 0/0 2/0 3/0 2/0 0/0 0/0 
Australian 1/2 3/1 5/1 1/1 5/0 4/1 0/4 0/4 
Breast 0/0 2/0 2/0 2/0 2/0 2/0 1/0 1/0 
Crx 1/2 3/1 5/1 1/1 5/0 4/1 0/4 1/2 
German 1/0 3/0 1/0 0/0 3/0 1/0 1/0 1/1 
Heart 1/0 2/0 5/0 0/0 4/0 5/0 2/1 3/0 
Hepatitis 0/1 3/0 3/1 1/1 4/0 2/0 0/1 3/1 
Hypothyroid 1/0 1/0 1/0 1/0 4/0 2/0 0/1 0/1 
Ionosphere 1/5 17/3 17/1 2/4 32/0 25/0 0/12 2/14 
Iris 2/0 1/2 0/1 1/1 1/2 1/0 1/2 1/2 
Pima 1/1 4/1 4/0 1/0 7/0 5/0 1/0 4/0 
SickEuthyroi
d 

0/0 1/0 1/0 0/0 4/0 4/0 0/0 1/0 

Vehicle 2/4 2/7 7/1 2/5 12/0 10/0 5/3 3/4 
Waveform 2/3 4/9 17/0 2/2 21/0 20/0 5/6 2/8 
Wine 1/4 1/5 5/0 5/1 11/0 10/0 2/1 4/5 

 

Total 14/22 49/29 73/6 21/16 118/2 97/2 18/35 26/42 
 

Table 14: Geometric mean of the number of intervals per attribute discretization 

Dataset MOD
L 

MDLPC BGain Fusin Khiop
s 

ChiM ChiS EqFr EqWi 

Adult 5.56 5.39 25.05 8.42 6.84 93.47 17.15 4.62 9.29 
Australian 2.13 1.95 15.82 6.28 2.12 13.49 4.86 7.74 7.80 
Breast 2.58 2.73 3.24 3.80 2.50 5.83 4.51 4.79 8.74 
Crx 2.17 1.97 15.99 6.23 2.14 13.39 4.83 7.75 7.80 
German 1.18 1.16 2.35 1.94 1.21 1.92 1.80 2.45 3.22 
Heart 1.62 1.60 3.75 3.06 1.62 3.38 2.32 4.54 4.79 
Hepatitis 1.47 1.35 6.47 3.21 1.51 6.02 2.55 8.08 8.70 
Hypothyroid 2.31 2.53 3.77 2.19 3.82 8.52 4.36 6.94 9.60 
Ionosphere 4.49 3.65 8.05 5.80 4.13 25.76 7.31 7.73 8.84 
Iris 2.99 2.75 2.00 3.10 2.82 3.68 3.60 7.43 9.70 
Pima 2.13 1.91 6.67 5.01 2.19 9.50 4.89 8.11 9.43 
SickEuthyroi
d 

2.84 2.83 3.06 3.41 3.11 12.79 5.26 6.94 9.59 

Vehicle 4.12 3.69 2.20 5.75 3.70 8.48 7.44 8.29 9.57 
Waveform 4.37 4.46 4.27 7.83 4.07 48.14 12.20 10.00 10.00 
Wine 2.72 2.62 2.01 4.00 2.53 6.15 4.56 9.40 9.83 

 

All attributes 2.79 2.62 4.50 4.40 2.77 10.71 5.18 6.44 7.73 
All datasets 2.60 2.48 4.96 4.27 2.68 9.96 4.91 6.63 8.15 
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Table 15: Number of MODL significant wins and losses for the number of intervals 

Dataset MDLPC BGain Fusin Khiop
s 

ChiM ChiS EqFr EqWi 

Adult 1/1 2/5 4/2 3/3 7/0 7/0 2/5 5/2 
Australian 0/3 3/2 6/0 2/1 6/0 6/0 6/0 6/0 
Breast 4/0 1/8 7/0 1/5 10/0 10/0 10/0 10/0 
Crx 0/4 3/2 6/0 1/2 6/0 6/0 6/0 6/0 
German 0/4 20/1 17/0 3/0 15/0 15/0 19/1 24/0 
Heart 0/1 3/0 6/0 0/0 6/0 6/0 8/0 8/0 
Hepatitis 0/1 4/0 6/0 2/0 6/0 6/0 6/0 6/0 
Hypothyroid 4/0 2/3 2/3 6/0 7/0 7/0 7/0 7/0 
Ionosphere 1/21 14/11 29/0 0/17 32/0 31/0 32/0 32/0 
Iris 1/2 0/4 2/0 0/1 4/0 4/0 4/0 4/0 
Pima 2/3 4/2 8/0 3/1 8/0 8/0 8/0 8/0 
SickEuthyroi
d 

0/1 1/4 5/0 4/0 6/0 6/0 6/0 7/0 

Vehicle 0/12 0/16 17/1 4/9 18/0 18/0 18/0 18/0 
Waveform 9/2 4/17 21/0 5/13 21/0 21/0 21/0 21/0 
Wine 1/5 0/10 12/0 1/7 13/0 13/0 13/0 13/0 

 

Total 23/60 61/85 148/6 35/59 165/0 164/0 166/6 175/2 
 


