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Abstract Companies want to extract value from their relational databases.
This is the aim of relational data mining. Propositionalization is one possible
approach to relational data mining. Propositionalization adds new attributes,
called features, to the main table, leading to an attribute-value representa-
tion, a single table, on which a propositional learner can be applied. How-
ever, current relational databases are large and composed of mixed, numerical
and categorical, data. Moreover, the specificity of relational data is to involve
one-to-many relationships. As an example of such data, consider customers
purchasing products: each customer can purchase several products. Therefore,
there is a need for techniques able to learn complex aggregates. Learning such
features means to explore a combinatorial, possibly infinite, space and such
an approach is prone to overfitting. We introduce a propositionalization ap-
proach dedicated to a robust Bayesian classifier. It efficiently samples a given
number of features in the language bias, following a distribution over the com-
plex aggregates. This distribution is also used to penalize complex aggregates
in the regularization of the robust Bayesian classifier. Experiments show that
it performs better than state-of-the-art methods on most investigated bench-
marks and can deal with large datasets more easily. A new real, large, mixed
relational dataset is introduced which confirms the ability of our approach to
learn complex aggregates.
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1 Introduction

Data mining encompasses a broad variety of practices. In a real industrial con-
text, there are no domain experts, machine learners or data scientists to fine
tune a new model every week. Additionally, there is no time to use wrappers
or cross-validation to optimize the parameters. Therefore, a first requirement
is that (1) the whole learning process, from data to predictions, should be
automatic, parameter-free. Moreover, the data considered daily by companies
are a mix of categorical and numerical columns in relational databases. A sec-
ond requirement is (2) to use online (up-to-date) relational databases, hence
to learn directly from different tables involving a mix of numerical and cate-
gorical data. In this context, discriminative features are complex aggregates,
i.e. aggregation functions are applied to related objects selected according to
conditions on possibly both their numerical and categorical columns. However,
increasing the expressivity can increase overfitting. A third requirement is (3)
to be able to learn complex aggregates without overfitting. Finally, more data
are needed to learn more complex features. Fortunately, marketing databases
are large. Therefore, a fourth requirement is that (4) the approach scales up
to large databases.

Learning from data in a relational format is the area of relational data min-
ing (Džeroski and Lavrač 2001). There are two approaches to relational data
mining, either using a full-fledged relational data mining tool that works on the
relational data directly, or transforming the relational data into an attribute-
value dataset in order to use attribute-value learners the data scientists may
be familiar with. The second approach is called propositionalization (Lachiche
2017). Few full-fledged relational data mining techniques scale up and are able
to learn complex features. On the other hand, propositionalization enables one
to run existing attribute-value software. In particular Boullé (2009) presents
the Selective Naive Bayesian (SNB) classifier, that is parameter-free, scales up
and does not overfit (Féraud et al 2010). However, it deals with attribute-value
data only, so a scalable, robust and automatic propositionalization is needed.
Few propositionalization approaches focused on using aggregation functions
such as minimum, maximum or average in order to deal with both the nu-
merical attributes and the one-to-many relationship. The first proposals were
Knobbe et al (2001) and Krogel and Wrobel (2001). But these seminal works
and more recent works could only generate simple aggregates with a single
condition on the related objects: for instance, either the average duration of
international calls, or the average duration of night calls, but not the average
duration of international night calls which is a complex aggregate. The ques-
tion summarizing the requirements listed above is whether existing relational
data mining systems can be used on large mixed, numerical and categorical,
data, and in particular whether increasing the expressivity by using complex
features increases overfitting too and whether their runtimes and memory con-
sumption are acceptable.

This paper presents a propositionalization approach combined with the
SNB classifier. The key contributions are:
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– a distribution over the complex aggregates,
– a sampling algorithm following this distribution to efficiently generate com-

plex aggregates in spite of the combinatorial search space,
– an extensive comparison, with respect to the four requirements above, to

the closest competitors: propositionalization approaches (Krogel and Wro-
bel 2001; Ahmed et al 2015) and full-fledged relational data mining sys-
tems (Van Assche et al 2006) able to generate aggregates, and first-order
Bayesian classifiers (Flach and Lachiche 2004; Landwehr et al 2007), and
the presentation of a new dataset, the Orange call detail records, that pro-
vides a real industrial challenge on a typical modern-industry scale (GB)
to be considered by the academic community.

The approach was first sketched in (Boullé 2014). It is described further in
this article with several examples illustrating the key points of the algorithms,
and more extensive experiments, including the new dataset.

Section 2 presents an overview of the approach: using a regularization ap-
proach to deal with overfitting, a distribution over complex aggregates has to
be defined. This distribution will be used both by the Bayesian classifier and
the sampling algorithm generating the features. This distribution, detailed in
Section 3, is based on the language bias only. Features are evaluated on the
data when they are sampled, in particular they are kept only if they bring more
information than the class only. Section 4 proposes an efficient sampling algo-
rithm, generating a given number of features. Our approach is compared with
respect to scalability and overfitting to the state-of-the-art methods detailed
above on several benchmarks in Section 5. Section 6 extends these experiments
to the new challenging relational datasets from Orange. This dataset illustrates
the need for robust and scalable algorithms able to generate complex features
on mixed, categorical and numerical, data. Section 7 describes related works.
Section 8 gives a summary and discusses future work.

2 General settings

This section presents the general settings of our approach. We first define our
learning task and the associated terminology. Then, we focus on the feature
construction rules, explain why regularization is needed, and set the basis of
the approach upon which the next sessions will be elaborated.

2.1 Learning task and terminology

We deal with classification: the objective consists in learning how to assign a
class to any new individual. Here the notion of individual is obviously crucial
since it is the object generalization is performed on. Hence a training set is a
set of labeled individuals.

In relational data mining, individuals are described across several tables.
One of the table enlists all the individuals: this table, referred to as the main
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Fig. 1 Data structure for a problem of customer relationship management

table, associates one row to each individual, with intrinsic properties of the
individual in its columns. Other tables, referred to as secondary tables, contain
records related to the individual through foreign keys. For example, the main
table may list customers whereas another table may present the products
bought by the customers as illustrated in Figure 1. These secondary tables
embed information that is relevant to the classification task. In Figure 2,
molecules are represented as graphs with molecules (lumo, logp and the class
feature) in a main table, atoms (element, type, charge) as vertices and bonds
(bondtype) as edges in two secondary tables. From this relational schema, we
extract and use the following relationships between the tables:

– every graph has a list of nodes (Atoms) and edges (Bonds)
– every edge (Bond) has two nodes (Atom1 and Atom2)
– every node (Atom) has a list of adjacent edges (Bonds it participates in).

This relation AdjacentBonds is an additional language bias, built using the
Atom1 and Atom2 relations between the Bond and Atom tables.

This is actually the representation used for the Mutagenesis dataset in Section
5.

Fig. 2 Data structure for a molecule classification task

Propositionalization is the process of adding columns to the main table
containing information extracted from the secondary tables (Lachiche 2017).
Propositionalization can derive different properties of the individual such as
the last date a product was used, the number of products used, etc. All these
properties are called features of the individual. They are either original fea-
tures which are intrinsic to the main table or constructed features which are
derived from secondary tables. When there is a one-to-many relationship be-
tween the main table and the secondary table, e.g. a customer purchasing
several products at different dates, many features can be derived, according
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to the language bias. Indeed, many features can be imagined and no machine
learning program generates all of them automatically. An example of such a
feature would be “is the number of products used since 12 months greater
than 10?”. In relational data mining, the language bias is either hard-coded
in the implementation, or defined by the user in the settings, for instance by
feature construction rules.

2.2 Feature construction rules

In our framework a feature construction rule is similar to a function (or
method) in a programming language. It is defined by its name, the list of its
operands and its return value. The operands and the return value are typed.
The standard types, numerical or categorical, can be extended to other spe-
cialized types, such as date or time. For example, the YearDay(Date)→Num
rule builds a numerical feature from a date feature. The operands can be a
column of a table, the output of another rule, i.e. another feature, or a con-
stant coming from the training set. In this paper, the construction rules used
in the experiments of Section 5 are the following ones:

– Selection(Table, selection criterion)→Table: selection of records from the
table according to a conjunction of selection terms (membership in a nu-
merical interval or in a group of categorical values, on a column of the
operand table or on a feature built from tables related to the operand
table),

– Count(Table)→Num: count of records in a table,
– Mode(Table, CatFeat)→Cat : most frequent value of a categorical feature

in a table,
– CountDistinct(Table, CatFeat)→Num: number of distinct values,
– Mean(Table, NumFeat)→Num: mean value of a numerical feature in a ta-

ble,
– Median(Table, NumFeat)→Num: median value,
– Min(Table, NumFeat)→Num: min value,
– Max(Table, NumFeat)→Num: max value,
– StdDev(Table, NumFeat)→Num: standard deviation,
– Sum(Table, NumFeat)→Num: sum of values.

Using the data structure presented in Figure 1 and the previous construc-
tion rules (plus the YearDay rule for dates that denotes the day of the year,
for example 32 for February 1st), one can construct the following features to
enrich the description of a customer:

– MainProduct = Mode(Usages, Product),
– LastUsageYearDay = Max(Usages, YearDay(useDate)),
– NbUsageProd1FirstQuarter = Count(Selection(Usages, YearDay(useDate)
∈ [1;90] and Product = “Prod1”)).

Using the molecule data structure presented in Figure 2, one can construct
more complex features exploiting the relationships between the atoms and the
bonds at several depths of recursion, such as:
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– Mean(Atoms, Count(AdjacentBonds): mean over the atoms of the molecule
of the number of bonds involving each atom,

– Sum(Selection(Atoms, element = ”c”), Min(AdjacentBonds, Atom1.type)):
sum, over the atoms of the molecule whose element is c, of the minimum
of the types of the first atoms of the bonds involving each atom,

– Sum(Bonds, Count(Selection(Atom2.AdjacentBonds where bondtype = 7))):
sum, over the bonds of the molecule, of the number of bonds of type “7”
involving their second atoms.

2.3 Regularization of feature construction

The issue is to exploit the language bias in order to efficiently drive the con-
struction of features which are potentially informative for the prediction of the
class attribute. In relational data mining, the data structure can have several
levels of depth or even have a graph structure. Some of the constructed fea-
tures can be used as operands of other rules, leading to the construction of
features of any length. The space of constructed features is thus of potentially
infinite size. This raises the two major following problems:

1. a combinatorial explosion for the exploration of this space of constructed
features,

2. and a risk of overfitting.

Our proposition for solving these problems is the introduction of an evalua-
tion criterion of the constructed features according to a Bayesian approach
in order to penalize complex features. This is called regularization. In order
to implement this evaluation criterion, we propose a prior distribution on the
space of all features and an efficient sampling algorithm of the space of features
according to their prior distribution.

Feature construction aims at enriching the main table with new features
that will be taken as input of a classifier. Since usual classifiers take as input
only numerical or categorical features, only these features will be considered.

2.4 Supervised preprocessing

Our approach builds upon the MODL supervised preprocessing methods (Boullé
2005, 2006). These methods consists in partitioning either a numerical features
into intervals or a categorical feature into groups of values, through a piecewise
constant class conditional density estimation. The parameters of a specific pre-
processing model MP (X) of a feature X are the number of parts, the partition
and the multinomial distribution of the classes within each part. In the MODL
approach, supervised preprocessing is turned into a model selection problem
and solved in a Bayesian way. A prior distribution is proposed on this model
space. This prior exploits the hierarchy of the preprocessing model parame-
ters: the number of intervals, the partitions of the domain into intervals, and
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the target distribution within each interval. The methods exploit a maximum
a posteriori (MAP) technique to select the most probable preprocessing. In
the Bayesian approach, the best model is found by maximizing the posterior
probability P (Model|Data) of the model given the data. Using the Bayes rule
and since the probability P (Data) is constant while varying the model, this is
equivalent to maximizing P (Model)P (Data|Model), that is the prior proba-
bility of the model times the likelihood. Taking the negative log of probabilities
that are no other than coding lengths (Shannon 1948) in the minimum descrip-
tion length (MDL) approach (Rissanen 1978), this amounts to the description
length L of a preprocessing model MP (X) (using a supervised partition) of a
feature X plus the description length of the output data DY given the model
and the input data DX .

costP (X) = L(MP (X)) + L(DY |MP (X), DX). (1)

We asymptotically have costP (X) ≈ Nent(Y |X) where N is the number of
training instances and ent(Y |X) the conditional entropy (Cover and Thomas
1991) of the output Y given the input feature X. Formula (1) and the related
optimisation algorithms are fully detailed in (Boullé 2006) for supervised dis-
cretization and (Boullé 2005) for supervised value grouping.

2.5 Null model and feature filtering

The null model MP (∅) corresponds to the case of a preprocessing model with
one single part (interval or group of values) and thus to the direct modelling
of the output values using a multinomial distribution, without using the input
feature. Hence, the criterion costP (∅) can be estimated through the direct
coding of the output values: the null cost is costP (∅) ≈ Nent(Y ), where ent(Y )
is the entropy of Y (Shannon 1948). The evaluation criterion of a feature is then
exploited according to a filter approach (Guyon et al 2006): only those features
whose evaluation is better than the null cost are considered informative and
retained at the end of the data preparation phase.

2.6 Accounting for the feature construction process

As the number of original or constructed features increases, the chance for
a feature to be wrongly considered informative becomes critical. In order to
prevent this risk of overfitting, we suggest in this paper to exploit the space of
constructed features described above by proposing a prior distribution over the
set of all feature construction models MC(X). From this distribution, we derive
a Bayesian regularization of the constructed features, which allows to penalize
the most “complex” features. More formally, we consider a prior probability for
(MC(X),MP (X)), a couple of feature construction and preprocessing model.
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Assuming that the preprocessing model is independent of the construction
model, we have

p(MC(X),MP (X)) = p(MC(X))p(MP (X)). (2)

Let L(MC(X)) = − log p(MC(X)) be the negative log of the prior probability
(coding length) of a construction model. This translates into an additional
construction cost L(MC(X)) in the evaluation criterion of the features, which
becomes as in Formula (3).

costCP (X) = L(MC(X)) + L(MP (X)) + L(DY |MP (X), DX). (3)

2.7 Overall learning process

The overall learning process consists of the following steps:

1. create the formulas of features (e.g. the number of calls longer than the
third quartile of phone call durations),

2. instantiate the variables (first scan of the data, e.g. find what the value of
the third quartile of phone call durations),

3. evaluate the features (second scan of the data, e.g. find for each customer
the actual number of calls longer than the third quartile of phone call
durations),

4. preprocess the features values (discretize numeric values and cluster cate-
gorical values, e.g. identify several intervals of the number of such calls),

5. evaluate their cost with Formula (3),
6. filter out the features whose cost is worse than the null model,
7. train the SNB classifier using the remaining features.

3 Prior distribution of the original and constructed features

In this section, we describe how to evaluate the prior distribution of features. A
feature is either a numerical or categorical feature. It appears in the main table
and it is either original or built using construction rules recursively. Since the
space of such features is of virtually infinite size, defining a prior probability on
this space raises many problems. In order to solve these problems, our choices
were guided by the following general principles:

1. A priori prefer the original features rather than constructed features.
2. Without additional information, the prior is uniform.
3. The prior exploits the feature construction domain.

The prior distributions over original and over constructed features are intro-
duced in this section and the combinatorial step of the selection rule is detailed.
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3.1 Case of original features

In the case where no feature can be constructed, the problem boils down
to the choice of an original feature among the K numerical or categorical
features of the main table. Using a uniform prior for this choice, we obtain
p(MC(X)) = 1/K, thus L(MC(X)) = logK.

3.2 Case of constructed features

In the case where features can be constructed, one must first choose whether
to use an original feature or to construct a new feature. Using a uniform prior
(p = 1/2) for this choice implies an additional cost of log 2 and violates our first
general principle: a priori prefer the original features rather than constructed
features. Then, we suggest considering the choice of constructing a new feature
as an additional possibility beyond the K original features. The cost of an
original feature becomes L(MC(X)) = log(K + 1), with an additional cost of
log(1 + 1/K) ≈ 1/K with respect to the case of original features only.

Then, constructing a new feature relies on the following hierarchy of choices:

– choice of constructing a new feature,
– choice of the construction rule among the R applicable rules (with the

required return value type and available operands of the required types),
– for each operand of the rule, choice of using an original feature or to con-

struct a new feature with a rule whose return value is compatible with the
expected operand type.

Using a hierarchical prior, uniform at each level of the hierarchy, the cost of
a constructed feature is decomposed on the operands of the used construction
rule according to the recursive Formula (4), where the features Xop are the
original or constructed features used as operands op of the rule R.

L(MC(X)) = log(K + 1) + logR+
∑
op∈R

L(MC(Xop)). (4)

3.3 Case of the Selection rule

The case of the Selection rule that extracts records from a secondary table
according to a conjunction of selection terms is treated similarly. The hierarchy
of choices is extended in the following way: number of selection operands, list
of selection features (original or constructed) and for each selection feature,
choice of the selection part (numerical interval or group of categorical values).
The selection part is itself chosen hierarchically, first with the choice of a
granularity of the partitioned feature into a set of quantiles and second with
the index of the quantile in the partition. In definitions 1 and 2, we provide a
precise definition of the notion of quantile partitions both for numerical and
categorical features.



10 Marc Boullé et al.

Definition 1 (Numerical quantile partition) Let D be a dataset of N
instances and X a numerical feature. Let x1, x2, . . . , xN be the N sorted val-
ues of X in dataset D. For a given number of parts P , the dataset is di-
vided into P equal frequency intervals ]−∞, xb1+N

P c
[, [xb1+N

P c
, xb1+2N

P c
[, . . .,

[xb1+iNP c
, xb1+(i+1)N

P c
[, . . ., [xb1+(P−1)N

P c
,+∞[.

Definition 2 (Categorical quantile partition) Let D be a dataset of N
instances and X a categorical feature with V values. For a given number of
parts P , let NP = dNP e be the expected minimum frequency per part. The
categorical quantile partition into (at most) P parts is defined by singleton
parts for each value of X with frequency above the threshold frequency NP and
a “garbage” part consisting of all values of X below the threshold frequency.

The number of selection terms is chosen according to the universal prior
for integer numbers of Rissanen (Rissanen 1983). This prior distribution is
as flat as possible, with larger probabilities for small integer numbers. Each
selection feature (original or constructed) is distributed using the prior defined
previously in this section. As for the granularities, we consider only powers
of two 21, 22, . . . 2p, . . . for the sizes of the partitions, with the exponent p
distributed according to the universal prior for integer numbers. Finally, the
index of each quantile is distributed uniformly among the 2p parts.

Whereas all the other rules exploit only the data structure and the set of
construction rules, the Selection rule exploits the values of the training dataset
to build the actual definition of the selection parts. This requires one read-
ing step of each secondary table to instantiate the formal definition of each
part (granularity and part index) into an actual definition, with numerical
boundaries for intervals and categorical values for groups of values. This read-
ing step requires collecting the values of each secondary feature, which might
raise some scalability problems in case of very large secondary tables. This can
be mitigated by using the Reservoir Sampling algorithm (Vitter 1985), which
collects a representative sample of limited size in one pass.

3.4 Synthesis

Figure 3 presents an example of such a prior distribution over the set of features
that can be built using the construction rules Mode, Min, Max and YearDay,
in the case of the customer relationship management dataset of Figure 1. For
example, the cost of selecting the original feature Age is L(MC(Age)) = log 3.
That of constructing the feature with formula Min( Usages, Y earDay(Date))
exploits a hierarchy of choices leading to

L(MC(Min(Usages, Y earDay(Date)))) = log 3 + log 3 + log 1 + log 1 + log 1.

This prior distribution on the space of feature construction corresponds
to a Hierarchy of Multinomial Distributions with potentially Infinite Depth
(HMDID). The original features are obtained from the first level of hierarchy
of the prior, whereas the constructed features get lower prior probabilities as
they exploit deeper parts of the HMDID prior with complex formulas.
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Fig. 3 Prior distribution of feature construction in the case of the customer relationship
management dataset

4 Building a random sample of features

The objective is to build a given number of features, potentially informative
for supervised classification, in order to create an input tabular representation.
We suggest building a sample of features by drawing them according to their
prior distribution. We present a first algorithm for building samples of features:
while it may seem quite straightforward and ”natural”, we demonstrate that it
is neither efficient nor even computable. Then, we propose a second algorithm
that solves the problem.

4.1 Successive random draws

Algorithm 1 Successive random draws
Require: K {Number of draws}
Ensure: V = {V }, |V| ≤ K {Sample of features}
1: V = ∅
2: for k = 1 to K do
3: Draw V according to HMDID prior
4: Add V in V
5: end for

Algorithm 1 consists in successively drawing K features according to the
HMDID prior. Each draw starts from the root of the prior and goes down in the
hierarchy until obtaining an original or constructed feature, which corresponds
to a leaf in the prior hierarchy. This natural algorithm cannot be used in the
general case, because it is neither efficient nor computable, as we demonstrate
below.

4.1.1 Algorithm 1 is not efficient

Let us consider a construction domain with V original features that can be
evaluated in the main table and no construction rule. The HMDID prior re-
duces to a standard multinomial distribution with V equidistributed values. If
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K draws are performed according to this multinomial distribution, the expec-
tation of the number of distinct obtained features is V (1− e−K/V ) (Efron and
Tibshirani 1993). In the case where K = V , this corresponds to the size of a
bootstrap sample, that is (1 − 1/e) ≈ 63% features obtained using V draws.
To obtain 99% of the original features, one needs K ≈ 5V draws, which is
not efficient. We informally define efficiency as the number of distinct features
with respect to the number of draws. Furthermore, in the case of construc-
tion rules, the multinomial at the root of the HMDID now consists in V + 1
equidistributed values. The draws result in the construction of a new feature
in only 1

V+1 of the cases. It is noteworthy that this problem of inefficiency
occurs at all levels of depth of the HMDID prior for the draw of the operands
of the rules under construction.

4.1.2 Algorithm 1 is not computable

Let us consider a construction domain with one single numerical feature x and
one single construction rule f(Num,Num)→ Num. The features that can be
constructed are x, f(x, x), f(x, f(x, x)), f(f(x, x), f(x, x)),
f(f(x, x), f(f(x, x), x))... In combinatorial mathematics, the Catalan number

Cn = (2n)!
(n+1)!n! ≈

4n

πn3/2 counts the number of such expressions. Cn is the

number of different ways n + 1 factors can be completely parenthesized or
the number of full binary trees with n + 1 leaves. Each feature represented
by a binary construction tree with n leaves (repetitions of x in the formula)
comes into Cn−1 formally distinct copies, each with a prior probability of
2−(2n−1) according to the HMDID prior. The expectation of the size s(F ) of a
constructed feature F (size defined by the number of factors in the constructed
formula) can then be computed. Using the above approximation of the Catalan
number, Formula (5) states that the expectation of the size of the feature is
infinite.

E(s(F )) =

∞∑
n=1

n2−(2n−1)Cn−1 =∞. (5)

This means that if one draws a random feature according to the HMDID
prior among all expressions involving f and x, the drawing process will never
stop on average. Algorithm 1 is thus not computable in the general case.

4.2 Simultaneous random draws

As features cannot be drawn individually as in Algorithm 1, we suggest
drawing a complete sample using several draws simultaneously. For a multino-
mial distribution (n; p1, p2, . . . , pK) with n draws and K values, the probability
that a sample results in counts n1, n2, . . . , nK per value is:

n!

n1!n2! . . . nK !
pn1
1 pn2

2 . . . pnK

K . (6)
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Algorithm 2 Simultaneous random draws
Require: K > 0 {Number of draws}
Ensure: V = {V }, |V| ≤ K {Sample of features}
1: V = ∅
2: Start from the root of the hierarchy of the HMDID prior
3: Compute the number of draws Ki = piK per branch of the prior tree (original fea-

ture, rule, operand...), where (p1, p2, . . . , pi, . . .) are the parameters of the multinomial
distribution locally to the root node

4: for all branches of the prior tree with Ki > 0 do
5: if terminal leaf of the prior tree (original feature or feature constructed with a com-

plete formula) then
6: Add V in V
7: else
8: Propagate the construction process recursively by assigning the Ki draws of this

branch on the multinomial distribution at the sub-level of the prior tree
9: end if

10: end for

The most probable sample is obtained by maximizing Formula (6), which
results into counts nk = pkn per value according to maximum likelihood.
For example, in the case of an equidistributed multinomial distribution with
pk = 1/K and n = K draws, Formula (6) is maximized for nk = 1. As
a consequence, all the values are drawn, which solves the inefficiency prob-
lem described in Section 4.1. Algorithm 2 exploits this drawing process using
maximum likelihood recursively. The draws are assigned to the original or con-
structed features at each level of depth of the HMDID prior, which results in a
number of draws that decreases with the depth of the prior hierarchy. In case
of even choices (for example, one single draw among K features), the draw is
chosen randomly using a uniform distribution, priority being given to original
features when both original and constructed features are possible. By assigning
recursively the draws according to multinomial distributions at each branch of
the hierarchy of the HMDID prior, with numbers of draws that decrease with
the depth of the hierarchy, Algorithm 2 is both efficient and computable.

Algorithm 3 Construction of a sample of features
Require: Nf {Number of features to construct}
Ensure: V = {V }, |V| ≤ Nf {Sample of features}
1: V = ∅
2: K = Nf {Number of draws}
3: repeat
4: nv = |V| {Number of features in the current sample}
5: V = call Algorithm 2 with K draws
6: K = K ∗ 2
7: {Stop if enough features or if no new features}
8: until |V| ≥ Nf or |V| = nv

9: {Filter in case of too many constructed features}
10: if |V| > Nf then
11: Sort V by decreasing probabilities
12: Keep top Nf features
13: end if
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In Algorithm 2, the number of draws may be greater than 1 in some leaves
of the prior hierarchy. This implies that the final number of features can be
inferior to the number of initial draws. Algorithm 3 is then used to perform
iterative runs of Algorithm 2 with increasing numbers of draws. To obtain a
given number of features Nf , Algorithm 2 is first called with Nf draws, then
called again successively with twice the number of draws at each call, until the
number of required features is reached or until no additional feature is built
in the last call. Last, if too many features have been sampled, these are sorted
by decreasing prior probability and only the top Nf features are kept.

This iterative doubling of the number of features to construct raises the
issue of its efficiency. In theory, estimating the right number will take as long as
actually iterating. But in practice this computation is negligible compared to
the feature generation because it does not involve any scan of the data. Overall,
Algorithm 2 is more efficient than Algorithm 1. It could still be improved but
this is not a priority since it only represents a small fraction of the overall
computing time.

More generally, considering the computational efficiency of the approach,
the overhead of the construction algorithm is negligible with respect to the
overall training time. Actually, Algorithm 3 consists in drawing a sample of
constructed features with their construction formulas. This algorithm mainly
relies on the exploration of the construction domain (data structure and set
of construction rules). The Selection rule requires one reading step of each
secondary table to build the actual selection operands. This reading step dom-
inates the time of the feature construction process, and is itself dominated by
the data preparation and modelling steps of the classifier.

4.3 Illustration of the algorithm

We illustrate the Algorithm 3 on a toy example, where Nc = 4 features must
be sampled from the prior tree displayed in Figure 3.

Fig. 4 First call to Algorithm 2 with 4 draws.

In a first step, Algorithm 3 calls Algorithm 2 with K = 4 simultaneous
draws, as shown in Figure 4. At the root of the prior tree, there are three
possibilities with equal probability:
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– selecting original feature Name,
– selecting original feature Age,
– selecting a rule to construct a new feature.

The related multinomial probabilities are (p1, p2, p3) = (1
3 ,

1
3 ,

1
3 ). The most

probable multinomial sample has counts Ki = piK per outcome. To get integer
counts, we first take the integer part Ki = bpiKc, and the remaining counts
are chosen randomly, with a priority for original features. In our example, we
get (K1,K2,K3) = (2, 1, 1) (assuming that the remaining count is assigned to
Name).

The construction process is propagated in the three branches of the prior
tree, with the numbers of draws (2, 1, 1). The first branch receives two draws,
but as it is a terminal leaf, one single feature (Name) is added to the sample
of features to construct or select. Similarly, the second branch ends with the
additional feature age. One draw (K3 = 1) is propagated in the last branch,
which relates to the choice of a rule. In this node of the prior tree, three
construction rules can be applied according to the types of their operands,
with equal probability:

– Mode,
– Min,
– Max.

The last remaining draw (K3 = 1) in this branch is chosen randomly
among the three rules, and we assume that Mode is chosen. The Mode rule
needs a Table as a first operand. As the only available Table feature in the
data structure (see Figure 1) is Usages, it gets a probability 1 in the prior
tree and is chosen. The second operand of Mode is a Categorical feature, and
the only available one in Usages is Product, that is thus chosen. At this point,
we are in a leaf of the prior tree, and the constructed feature Mode(Usages,
Product) is added to the set of features. Overall, the K = 4 initial draws have
been exploited to obtain three features:

– Name,
– Age,
– Mode(Usages, Product).

Fig. 5 Second call to Algorithm 2 with 8 draws.
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Since the first sampling step did not yield enough features, the number of
draws is doubled and we iterate. In a second step, Algorithm 3 then calls Algo-
rithm 2 with K = 8 simultaneous draws, as illustrated in Figure 5. At the root
of the prior tree, the most probable sample for the multinomial distribution
with three equiprobable choices receives counts (K1,K2,K3) = (3, 3, 2).

Again, the construction process is propagated in the three branches of
the prior tree. The two first branches are terminal leaves that each receive 3
draws and each branch returns one single feature (Name and Age). Two draws
(K3 = 2) are propagated in the last branch, which relates to the choice of a
rule among the three following rules: Mode, Min, Max. The best multinomial
sample of size K3 = 2 is (K3.1,K3.2,K3.3) = (1, 1, 0) The first branch is
related to the rule Mode, and as previously, it ends with the constructed feature
Mode(Usages, Product). The last remaining draw (K3.2 = 1) is exploited in
the Min sub-branch. Like Mode, the Min rule takes the Usages for its first
operand. The second operand of Min is a Numerical feature, and the only
available rule that could produce one is the YearDay. This rule, the only one
available, gets a prior probability 1 in the prior tree and is thus chosen. In
this node of the prior tree, the YearDay rule needs a Date operand, and it
uses the Date feature of Usages, which is the only one available. At this point,
we are in a leaf of the prior tree, and the constructed feature Mean(Usages,
YearDay(Date)) is added to the set of sampled features. Overall, the K = 8
draws in the second call to Algorithm 2 have been exploited to build four
features:

– Name,
– Age,
– Mode(Usages, Product),
– Mean(Usages, YearDay(Date)).

Algorithm 3 then stops, since the required number of features has been con-
structed. Being a propositionalization method, it has built a flat representa-
tion, that could be used as input by any classification method. Still, in the
suggested approach (cf. Section 2.3), the construction prior is exploited again
for regularization purposes so as to prevent overfitting.

4.4 Illustration with the Selection rule

We now illustrate the case of the Selection rule described in Section 3.3. We
reuse the same data structure as in the previous section, but assume that the
set of available construction rules is extended with the Selection rule, and that
Nc = 100 features must be sampled using Algorithm 3.

In a first step, Algorithm 3 calls Algorithm 2 with K = 100 simultaneous
draws, as shown in Figure 6. Like in Figure 4, at the root of the prior tree,
there are three possibilities with equal probability (p1, p2, p3) = (1

3 ,
1
3 ,

1
3 ). The

most probable multinomial sample has counts Ki = piK per outcome, and we
get (K1,K2,K3) = (34, 34, 33), resulting in selecting the two original features
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Fig. 6 Call to Algorithm 2 with 100 draws, using the Selection rule.

Name and Age, and propagating 33 draws to construct a new feature. In this
last branch, three construction rules (Mode, Min, Max ) are available with
equal probability, and each construction rule receives 11 draws.

4.4.1 Choosing between a Table original feature and the Selection rule

We now focus on the Mode rule, which has two operands: a Table feature
and a Categorical feature within the table operand. The first operand can
be either an original feature or a constructed feature. As the Customer data
structure contains a single Table feature (Usages: see Figure 1), there are two
possibilities with equal probabilities for the first operand of Mode:

– selecting original feature Usages,
– selecting a rule to construct a new Table feature.

In the Mode node of the prior tree pictured in Figure 6, the best multi-
nomial sample of size K3.1 = 11 is (K3.1.1,K3.1.2) = (6, 5). In the first sub-
branch, the Usages is selected, and the 6 draws end in constructing the feature
Mode(Usages, Product), like in Section 4.3. In the second sub-branch, 5 draws
are propagated to build the first operand of Mode using the Selection rule.

Fig. 7 Choice of selection terms in the Selection rule.
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4.4.2 Choosing the selection terms

We continue focusing on this branch of the prior tree in Figure 7, that il-
lustrates the next step in constructing a feature with the Selection rule. The
Selection rule has two operands: a Table and a selection operand. The only
available Table feature is Usages, which is chosen as first operand and receives
5 draws. The second operand is a conjunction of selection terms. According
to Section 3.3, the number of selection terms is distributed according to the
universal prior for integer numbers of Rissanen (Rissanen 1983).

0.001

0.01

0.1

1

0 5 10 15 20 25

p(N)

N

Fig. 8 Universal prior for integer numbers.

We have p1 ≈ 0.349027, p2 ≈ 0.174513, p3 ≈ 0.073404, p4 ≈ 0.043628, . . .,
with

∑∞
i=1 pi = 1. This prior is very flat, and for example, we have p25 ≈

0.0012, p100 ≈ 0.00013. Back to our feature construction algorithm illustrated
in Figure 7, we have 5 draws to choose the number of selection terms, dis-
tributed according to the universal prior for integer numbers of Rissanen. The
maximum likelihood estimate (nk = npk) is valid only asymptotically, and for
very small n, we use a greedy optimization heuristic to maximize the likeli-
hood using the exact Formula (6). This heuristic starts from the asymptotic
solution and iteratively adds, removes or moves draws across the multinomial
values while the criterion improves. In our case with 5 draws for the number
of selection terms, we get 4 draws for selection operands having one selection
term and one draw for selection operands with two selection terms.

Each selection term is either of numerical or categorical type and is chosen
using the construction prior as before. In the case illustrated in Figure 7 for
one selection term, there is one single original feature with one of the required
types (Product). Otherwise, a rule must be chosen to construct a feature,
and here, the YearDay rule is the only available one to build an additional
feature, of numerical type. In the end, the constructed selection operand can be
Product or YearDay(Date) with equal probability, and each possibility receives
two draws. The case of multiple selection terms is treated in the same way by
constructing the feature involved in each selection term.
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Fig. 9 Choice of granularity and quantile in a selection term.

4.4.3 Choosing the selection quantiles

We remind that every selection term is of the form (feature ∈ quantile) (see
Section 3.3). Once the features in the selection terms have been chosen, the
selection terms must be completed by choosing the quantile. This is illustrated
in Figure 9 by focusing on the branch Mode(Selection(Usage, Product ∈ . . . ),
. . . ). The size 21, 22, . . . 2p, . . . of the partition of the Product feature is chosen
with the exponent p distributed according to the universal prior for integer
numbers. With only two draws at this stage of the prior tree, we get two
draws for partitions with 2 quantiles, and zero draw for finer partitions. The
last choice is the quantile, given the partition size. Given a partition of size 2,
two quantiles are available with equal probabilities ( 1

2 ,
1
2 ), and here, each of

them gets one draw. Altogether, in this branch of the prior tree, the Selection
rule is completed in two ways:

– Mode(Selection(Usage, Product ∈ quantile1/2),. . . ),
– Mode(Selection(Usage, Product ∈ quantile2/2),. . . ).

Once the first operand of the Mode rule is completed with a Selection, the
second operand can be chosen using again the prior tree, as in Figure 6.

4.4.4 Getting the actual definition of the selection quantiles

Let us notice that the Algorithm 2 exploits only the data structure and the
set of available construction rules to build new features, without reading the
database. As explained in Section 3.3, the Selection rules are constructed us-
ing formal definitions of quantiles (such as quantilei/s: quantile of index i in
a partition of size s). Once the required number of features has been sampled
by Algorithm 3, there is one reading step on the whole database to instanti-
ate the formal definition of each selection quantile into an actual definition,
with numerical boundaries for intervals and categorical values for categorical
quantiles.

5 Experimental evaluation

This section details the experimental setup, analyses the results of 9 algorithms
on 14 benchmarks, and discusses further aspects.
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5.1 Experimental setup

We present the algorithms, the datasets and the experiments.

5.1.1 Competing algorithms

The experiments perform comparisons with alternative relational data mining
methods based on propositionalization and with Inductive Logic Programming
(ILP) Bayesian classifiers. We compare the following methods:

– MODL is the method described in this paper. It exploits the following con-
struction rules (cf. Section 2.2): Selection, Count, Mode, CountDistinct, Mean,

Median, Min, Max, StdDev, Sum. Its single parameter is the number of fea-
tures to construct (see Section 4.2). It was set to 1, 3, 10, 30, 100, 300,
1,000, 3,000 and 10,000 in the experiments. The features are generated us-
ing Algorithm 3 then filtered using Formula (3), which accounts for both
construction and preprocessing cost. The filtered features are used as in-
put of a selective naive Bayesian classifier with feature selection and model
averaging (SNB1) (Boullé 2007), which is both robust and accurate in the
case of very large numbers of features.

– RELAGGS is our implementation of the Relaggs propositionalization method
(Krogel and Wrobel 2001). It exploits the same construction rules as MODL
and exhaustively constructs all the possible features, except for the Selec-
tion rule that raises combinatorial problems. Instead RELAGGS adopts
a systematic approach for retrieving information from secondary tables:
it constructs all the rules based on counts for categorical values and it
derives rules from all other numerical aggregation functions for numerical
attributes. The constructed features are then fed into the SNB classifier.

– Cardinalisation and Quantilisation (Ahmed et al 2015) are propositional-
ization techniques to deal with numerical features in a secondary table. Let
us denote i an instance of the primary table, associated to ni records of the
secondary table, A a numerical feature of the secondary table, and Q − 1
the number of features we want to build. Let us assume that the values
vi,j of A for the ni associated records are ordered. For 1 ≤ q ≤ Q − 1,
quantilisation outputs vi,j such that j = q

Q ∗ ni and cardinalisation out-

puts vi,j such that j = min(ni,
q
Q ∗N) where N = maxi(ni). Again these

propositionalization techniques generate features that are used with the
SNB classifier. No filtering is used.

– 1BC is the first-order Bayesian classifier described in (Lachiche and Flach
1999). It can be considered as a propositionalization method, with one
feature per value in a secondary table. These features are counted as words
in a document in the wordification approach (Perovsek et al 2015). In
1BC they are used as features in a propositional naive Bayesian classifier.
To preprocess the numerical values of each table, all numerical features

1 The SNB classifier, with the MODL feature construction method, is available as a share-
ware at http://www.khiops.com.
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are discretized into equal frequency intervals. In the experiments, we use
discretization into 1, 2, 5, 10, 20, 50, 100 and 200 bins.

– 1BC2 is the successor of 1BC described in (Lachiche and Flach 2002). While
1BC applies propositionalization, 1BC2 is a true first-order classifier. It
estimates the probabilities of sets given the probabilities of their elements.
Numerical features were dealt with using the same discretizations as 1BC2.

– NFOIL (Landwehr et al 2007) is the most recent approach combining naive
Bayes and propositionalization. In NFOIL, feature construction is more
tightly integrated with the Bayesian classifier than in our propositionaliza-
tion approach. However, it does not use aggregation functions other than
the existential quantifier and does not deal explicitly with numerical at-
tributes. We use discretization into 1, 2, 5, 10, 20, 50, 100 and 200 bins as
for the other classifiers. We use the same parameters as in the experiments
reported in (Landwehr et al 2007): a beam search of size 5, a sensitivity
of 0.1%, but we set the maximum number of features to 100 because the
actual number of features exceeded the default 25. Indeed, the number of
categorical values increases with the number of discretization bins. Increas-
ing the maximum number of features increases the search space hence the
runtime. NFOIL is able to select a much lower number of features than
the maximum number of features allowed. The few times the number of
features reached or exceeded 100 (namely on the MIML datasets), we ran
NFOIL again raising the maximum number of features to 500.

– Tilde is a logical decision tree learner described in (Blockeel and De Raedt
1998). Based on Inductive Logic Programming, it constructs and refines
first-order rules as decision tree splits. To do so, Tilde introduces features
using existential quantification, and evaluates the quality of the rules using
the same metrics as Quinlan’s C4.5, described in (Quinlan 1993). In the
same fashion as for 1BC, we use discretization into 1, 2, 5, 10, 20, 50, 100
and 200 bins.

– FORF is the extension of Tilde to a Random Forest model, as described in
(Van Assche et al 2006). Moreover, it uses a subset of the construction rules
of MODL, namely Count, Mean, Min and Max construction rules, and the
Selection rule limited to a maximum of one term in the conjunction. We
used the same discretization levels as for Tilde, and Random Forests were
constructed with 33 trees.

Those techniques represent the variety of ILP techniques, from propositional-
ization to full-fledged first-order learners. They include the closest competitors,
i.e. first-order Bayesian classifiers or techniques that can learn complex fea-
tures for real datasets involving a mix of numerical and categorical feature.
Other relevant approaches are discussed in Section 7.

The Relaggs, Cardinalisation and Quantilisation are propositionalization
approaches. The features they generate are compared to those introduced in
this article following the MODL approach using exactly the same robust naive
Bayesian classifier (SNB).

2 1BC and 1BC2 are available on the online data mining service http://clowdflows.org/.
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1BC and 1BC2 are considered as simple baselines. They are quick but
less expressive naive relational Bayesian classifiers. They represent similar ap-
proaches, Ceci et al (2003); Liu et al (2005) that are discussed in Section 7.
The aim of our approach is to be able to generate more complex features, still
efficiently, to get a better accuracy without overfitting. As a consequence, our
approach has to beat such simple baselines. NFOIL is the state-of-the-art in
first-order Bayesian classifiers. It is able to use more complex features than
1BC, 1BC2 and similar approaches.

The data we aim to deal with (cf. Section 6) involve a mix of numerical
and categorical data and require to be able to generate hypotheses contain-
ing complex aggregates, for example the number of calls of a given type and
duration. For this reason, we consider full-fledged relational data mining tech-
niques that are able to deal as naturally as possible with numerical attributes
and to generate such complex aggregates. To the best of our knowledge, the
only available techniques meeting these criteria are the relational decision tree
learner Tilde and its random forest variant FORF.

5.1.2 Benchmarks

Table 1 Relational datasets: number of instances, records in the secondary tables, categor-
ical and numerical columns, classes, and accuracy of the majority class

Dataset Instances Records Cat.cols Num.cols Classes Maj.

Auslan 2,565 146,949 1 23 96 0.011
CharacterTraject. 2,858 487,277 1 4 20 0.065
Diterpenes 1,503 30,060 2 1 23 0.298
JapaneseVowels 640 9961 1 13 9 0.184
MimlDesert 2,000 18,000 1 15 2 0.796
MimlMountains 2,000 18,000 1 15 2 0.771
MimlSea 2,000 18,000 1 15 2 0.710
MimlSunset 2,000 18,000 1 15 2 0.768
MimlTrees 2,000 18,000 1 15 2 0.720
Musk1 92 476 1 166 2 0.511
Musk2 102 6,598 1 166 2 0.618
Mutagenesis 188 10,136 3 4 2 0.665
OptDigits 5,620 5,754,880 1 3 10 0.102
SpliceJunction 3,178 191,400 2 1 3 0.521

Fourteen relational datasets are considered in these experiments. They
were chosen because they contain a mix of numerical and categorical columns,
are likely to need complex aggregates and are among the largest ILP bench-
marks. The Auslan, CharacterTrajectories, JapaneseVowels, OptDigits and
SpliceJunction datasets come from the UCI repository (Bache and Lichman
2013) and are respectively related to the recognition of Australian sign lan-
guage, characters from pen tip trajectories, Japanese speakers from cepstrum
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coefficients of two uttered vowels, handwritten digits from a matrix of 32*32
black and white pixels, and boundaries between intron and exon in gene se-
quences (DNA). Each of these sequential or time series datasets is represented
with one main table and a secondary table in zero-to-many relationship. The
Diterpenes (Džeroski et al 1998), Musk1, Musk2 (De Raedt 1998) and Mu-
tagenesis (Srinivasan et al 1994) datasets are related to molecular chemistry.
The Mutagenesis dataset is a graph with molecules (lumo, logp plus the class
feature) in a main table, atoms (element, type, charge) as vertices and bonds
(bondtype) as edges, cf. Figure 2. It is a dataset involving an arbitrary depth,
i.e. an arbitrary number of imbrications of secondary tables. The Miml dataset
(Zhou and Zhang 2007) is related to image recognition, with five different tar-
get features. Table 1 gives main characteristics of these datasets: the number
of instances in the main table, the number of records in the secondary table
and its numbers of categorical and numerical columns, the number of classes
and the proportion of the majority class.

Some datasets, in particular images, may be represented by an exact propo-
sitional version, whereas truly relational datasets do not have such an attribute-
value representation. However, a relational representation of these non truly
relational datasets allows learning relational features, such as the number
of black pixels on the horizontal middle line, that cannot be learned by an
attribute-value learner. This is investigated in 5.2.3.

5.1.3 Experiments

All the experiments are performed using a stratified 10-fold cross validation.
In each training fold, the features are generated and selected and the classifier
is trained, while the test accuracy is evaluated on the test fold.

For each dataset, we are interested in the accuracy with respect to the
expressivity. In our experiments, the expressivity of each algorithm depends
on the number of features it can consider. RELAGGS has no control over the
number of generated features which depends only on the number of values of
categorical features and on the number of aggregation functions. The number
of features considered by cardinalisation, quantilisation, 1BC, 1BC2, NFOIL,
Tilde and FORF can be tuned by varying the number of discretization bins in
a wrapping approach, e.g. (Ahmed et al 2015). NFOIL, Tilde and FORF only
output features that are used in the model. They do not output a set of features
as a propositionalization approach. But they test numerous features when
building the model. We use this number of queries as the number of features.
The MODL method explicitly controls the number of generated features.

Figure 10 shows the average accuracies of each technique with respect to
the original number of features generated (i.e. before filtering). The mean
test accuracy with respect to the number of generated features per dataset is
reported in Figure 10, with the standard deviation represented by error bars.
The baseline (horizontal gray dashed line) is the accuracy of the majority
classifier. The performance of MODL is reported for each number of actually
generated features. The performance of RELAGGS is reported only once, with
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Fig. 10 Test accuracy versus original number of generated features per dataset.
MODL: ◦ red RELAGGS: � navy Cardinal.: • lime Quantil.: ? green
1BC: 4 cyan 1BC2: ∇ blue NFOIL: D brown Tilde: ♦ pink FORF: � violet



Propositionalization for Bayesian Classification of Large Mixed Data 25

the number of generated features resulting from an exhaustive application of
the construction rules. The performances of 1BC, 1BC2, NFOIL, Tilde, FORF,
cardinalisation and quantilisation are reported for each bin number of the
discretization preprocessing. All numerical features were discretized into 1, 2,
5, 10, 20, 50, 100 and 200 bins to generate an increasing number of generated
features. Only 1 to 10 bins were evaluated for NFOIL and FORF on the MIML
datasets because the run time of a cross-validation is longer than 4 days, and
did not show an increase of accuracy. NFOIL, Tilde and FORF could not be
run on the largest datasets, Auslan, CharacterTrajectories and SpliceJunction,
due to memory limitations.

Figure 11 shows the average accuracies of each technique with respect to
the training time while varying the number of features. Training durations
lower than 1 second are not shown. For this reason only MODL, NFOIL,
Tilde and FORF can be seen on the mutagenesis dataset. Let us notice that
the algorithms are implemented in different programming languages and the
training time can vary according to the load and power of the computers where
the experiments were run. Therefore, we focus on the order of magnitude, using
a logarithmic scale on the x axis, on the one hand, and on the shape of the
learning curve, i.e. how quickly the accuracy improves with more training time
in order to build more complex features.

5.2 Analysis

Machine learning aims at maximizing the accuracy or other similar perfor-
mance measure. One can check on Figures 10 and 11 that MODL produces
models ranking among the best in term of accuracy on most of the datasets,
at least when there are enough data to learn complex hypotheses, cf. 5.3.2.
Conversely, learning complex hypotheses makes sense if the learner avoids
overfitting, is tractable and finally reaches its best accuracy automatically.

5.2.1 Robustness

As can be seen on Figures 10 and 11, most methods get better performance as
the number of features increases. But they suffer from overfitting: their accura-
cies decrease, after having reached a maximum, when the number of features
increases. All the propositionalization methods, RELAGGS, cardinalisation
and quantilisation, are used with the SNB classifier (the same as for MODL)
and inherit from its accuracy and robustness. With its simple expressivity,
RELAGGS provides a strong baseline that gets a very good accuracy with
few features. More expressive techniques can hardly outperform this baseline.
Only FORF and MODL succeed. MODL makes an impressive difference on
OptDigits and SpliceJunction, actually on datasets with numerous instances.
On the contrary, in the Musk1 and Musk2 datasets, the MODL method does
not improve over the baseline.
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MODL: ◦ red RELAGGS: � navy Cardinal.: • lime Quantil.: ? green
1BC: 4 cyan 1BC2: ∇ blue NFOIL: D brown Tilde: ♦ pink FORF: � violet



Propositionalization for Bayesian Classification of Large Mixed Data 27

We pointed out that all approaches but MODL are prone to overfitting. In-
deed, sometimes their accuracies happen to decrease as the number of features
decreases. In order to further evaluate the robustness of the MODL approach,
the class labels have been randomly shuffled in each dataset before perform-
ing the experiment again. Two experiments are performed, one using criterion
costCP of Formula (3) (accounting for the construction cost of the features),
the other using costP of Formula (1) (not accounting for the construction
cost). The number of selected features is collected in both cases. The used
preprocessing methods (Boullé 2005, 2006) are very robust. However, when
10,000 features are generated, on average 5 features per dataset are wrongly
selected, with more than 20 features for the JapaneseVowels dataset. When
the construction regularization is used (criterion costCP ), the method is ex-
tremely robust: the overall 1.4 million generated features, over all the datasets
and folds of the cross-validation, are all identified as information-less, without
any exception.

5.2.2 Scalability

Figures 10 and 11 illustrate that MODL provides a better accuracy with a
smaller number of features and with a smaller run time (often by several orders
of magnitude: the x-axis scales are logarithmic). This frugality allows MODL
to tackle large datasets such as auslan, character trajectories and optical digits
while its competitors with high expressivity, in particular NFOIL, Tilde and
FORF, cannot be run.



2
8

M
a
rc

B
o
u

llé
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Table 2 Accuracies (%) at the maximal expressivity

Dataset MODL REL. Quant. Card. 1BC 1BC2 NFOIL Tilde FORF Published

Auslan 97.7±0.9 95.8±1.3 95.5±1.2 46.2±2.6 62.7±3.1 34.4±3.1 NA NA NA 97.9±0.2 (Burke
2013)

Character
Trajectories

100±0.1 99.7±0.3 100±0.1 99.8±0.2 95.7±1.3 95.3±1.3 NA NA NA 98.7±0.4 (Burke
2013)

Diterpenes 93.4±1.8 80.8±3.2 69.7±2.5 69.6±3.9 76.4±2.3 80.4±3.2 80.7±3.9 52.4±21.1 87.4±5.1 97.2 (Gärtner
et al 2004)

Japanese
Vowels

97.0±1.5 94.2±2.1 94.7±2.1 93.6±1.6 93.0±3.6 94.7±2.2 77.2±3.1 85.2±3.2 96.6±2.2 99.0 (Burke
2013)

Miml Desert 87.1±1.5 84.4±2.2 84.3±1.7 84.3±1.7 78.1±2.8 78.6±2.4 78.2±2.6 80.5±2.8 87.1±3.1 86.9±1.4 (Zhou
and Zhang 2007)

Miml
Mountains

83.3±1.8 80.1±1.7 79.2±1.6 79.2±1.6 73.0±3.6 73.8±3.2 76.4±2.3 76.1±3.0 83.6±2.4 82.0±2.2 (Zhou
and Zhang 2007)

MimlSea 72.2±2.8 72.7±1.9 71.9±3.1 71.9±3.1 64.9±3.9 65.8±3.8 65.3±2.6 67.0±3.7 73.4±4.2 73.0±3.0 (Zhou
and Zhang 2007)

Miml Sun-
set

88.4±1.5 86.3±1.9 86.3±2.0 86.3±2.0 84.6±2.8 84.4±2.5 83.3±3.2 81.1±2.0 87.8±2.2 88.3±2.3 (Zhou
and Zhang 2007)

Miml Trees 79.9±2.2 79.0±3.7 77.1±2.9 77.1±2.9 72.1±3.5 71.4±3.1 70.9±2.6 71.1±3.2 80.8±4.0 80.1±1.5 (Zhou
and Zhang 2007)

Musk1 64.2±9.2 87±11.8 80.6±10.5 89.1±13.9 61.7±20.9 67.3±14.8 72.9±14.8 80.6±17.0 86.9±12.7 92.4 (Gärtner
et al 2004)

Musk2 60.8±3.7 80.4±10.8 82.4±10.6 70.4±12.2 49.8±16.1 59.6±11.4 68.9±14.6 73.7±13.4 81.1±9.5 89.2 (Gärtner
et al 2004)

Mutagenesis 85.6±10.2 85.6±8.1 86.1±8.4 84.5±7.6 84.6±6.0 80.7±8.0 82.5±5.3 88.3±5.7 87.2±4.2 95.8±3.3 (Lodhi
and Muggleton
2005)

OptDigits 97.3±0.5 12.9±1.1 14.3±1.2 14.1±1.0 8.8±0.8 12.8±1.2 NA NA NA 98.0 (Meena and
Devi 2015)

Splice Junc-
tion

96.5±0.8 54.6±2.1 52.1±0.1 52.1±0.1 51.9±3.2 53.3±2.3 89.7±2.7 c 55.6±0.1 68.2±0.1 91.7 (Zhou 2015)
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5.2.3 Automaticity

Ideally, the user of a learning system should not be required to tune any pa-
rameter. On the contrary, she/he might expect the learning system to provide
the best model automatically. Whereas RELAGGS has no parameters, the
other algorithms are not automatic. In particular, all algorithms that cannot
deal with numeric attributes require to choose a discretization. MODL has a
single parameter: the number of features. So our approach could be used in an
anytime setting where the program is run iteratively, doubling the number of
features at each step, until the user stops it. The relevance of such an anytime
setting is backed by Figures 10 and 11: they illustrate that MODL selects the
most informative features first, and that it is monotonic: its accuracy increases
when the number of features, and runtime, increase.

An additional issue is whether such automatically built features can com-
pete with the state-of-the art methods. Table 2 shows the accuracies and stan-
dard deviations on every dataset of each approach at the maximal number of
features considered in our experiments, cf. Figure 10. We assume that the max-
imal number of features corresponds to the best expressivity of each approach,
even though we already pointed out before that some approaches, e.g. 1BC on
Auslan, overfit, therefore we call it maximal expressivity. We saw previously
that MODL is monotonic and outperforms other relational data mining tech-
niques on most datasets. We focus now on the best published results on each
dataset, to the best of our knowledge. Table 2 refers to the publications where
each best accuracy was published and reports the standard deviation when
it is available. Even though the exact experimental setup might be different
from ours, most published accuracies were estimated averaging several runs
of cross-validation, so we consider they provide a sound basis for comparison.
Table 2 highlights in bold face the best accuracy for each dataset and in italic
accuracies that are not significantly lower, less than one standard deviation
lower than the best accuracy.

We observe that MODL and FORF, when it is tractable, get close and
sometimes better than the best published accuracies so far, whereas those
results often correspond to dedicated approaches, in particular image or signal
processing for Auslan, CharacterTrajectories, JapaneseVowels and OptDigits.
Thus, generic automatic feature construction techniques can compete with
expert approaches.

5.2.4 Comparative analysis of accuracy

We apply the Friedman test coupled with a post-hoc Nemenyi test as sug-
gested by Demšar (2006) for comparisons of classifiers over multiple datasets
(at significance level α = 0.05 for both tests). The null-hypothesis is rejected,
which indicates that the compared methods are not equivalent in terms of ac-
curacy. The result of the Nemenyi test is represented by the critical difference
chart shown in Figure 12 with CD ≈ 3.21 and where the mean rank of each
method is plotted. First of all, we observe that there is no critical difference
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Fig. 12 Critical difference chart

of performance between the top five competitors MODL, FORF, RELAGGS,
Cardinalisation and Quantilization. Secondly, even though MODL is not sta-
tistically singled out, only MODL and FORF get a significant advantage on
Tilde, NFOIL, 1BC and 1BC2.

5.3 Further investigations

In this section, we investigate two further aspects, namely the impact of the
initial representation, i.e. the sensitivity to a clever representation, and the
impact of regularization, i.e. why more data are needed to learn more complex
hypotheses.

5.3.1 Impact of the initial representation
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Fig. 13 Test accuracy result for the OptDigits dataset, using 4*4 blocks of pixels.
MODL: ◦ red MODL(pixel): • gray Tilde: ♦ pink FORF: � violet

This section evaluates the impact of the data representation, in particular
whether a preprocessing step according to human expertise is needed. We
consider the OptDigits dataset from UCI machine learning repository. The
raw representation consists of 32× 32 bitmaps. The human experts suggested
an improved representation (Bache and Lichman 2013) dividing the 32 × 32
bitmaps “ into non overlapping blocks of 4x4 and the number of activated
pixels are counted in each block. This generates an input matrix of 8x8 where
each element is an integer in the range 0..16. This reduces dimensionality and
gives invariance to small distortions.” Figure 13 shows the test accuracy with
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respect to the number of features on the left and with respect to the training
time on the right. We focus on 4 approaches: MODL, Tilde and FORF using
the expert representation, and MODL(pixel) using the raw 32 × 32 bitmaps.
Let us first notice that the raw representation is too large to run Tilde and
FORF. Hence, the reduction of dimensionality is useful. MODL also benefits
from it as can be seen with its better learning curve with respect to time.
However MODL does not actually need the expert representation to achieve
good accuracy. On the right-hand side of Figure 13, only training time greater
than 1 second are shown. MODL(pixel) takes 100 seconds to generate complex
enough features to finally reach the same accuracy as MODL using the expert
representation. Moreover, the curves of MODL and MODL(pixel) with respect
to the number of features, on the left-hand side of Figure 13, are close, showing
that MODL is able to build relevant features in both representations.

5.3.2 Impact of feature construction regularization

100 101 102 103 104 105 Feat.0.4

0.6

0.8

1.0

Te
st

 a
cc

Musk1

100 101 102 103 104 105 Feat.
0.5
0.6
0.7
0.8
0.9

Te
st

 a
cc

Musk2

Fig. 14 Test accuracy result for the Musk1 en Musk2 datasets, with or without (NR)
regularization of feature construction.
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In this section, we further study the impact of the construction cost (term
L(MC(X)) in Formula (3)) exploited in the MODL approach to penalize com-
plex constructed features. Using this construction cost, the approach is regu-
larized and very resilient to overfitting, at the expense of underfitting for noisy
tiny datasets such as Musk1 or Musk2. Indeed, Figure 10 illustrates that the
accuracy of MODL increases when the number of features increases: there is no
overfitting. Moreover, we checked in Subsection 5.2.1 on robustness that our
regularization detects when there is nothing to learn. Therefore, regularization
is effective on all datasets. This section focuses rather on why regularization
prevents MODL to reach accuracies as good as other expressive approaches
like Tilde or FORF on small datasets (Musk1 and Musk2), and finally whether
this behaviour is desirable.

In a new experiment, the MODL approach is applied again on Musk1 and
Musk2 dataset, with or without (NR) regularization, and compared to the
most accurate alternative methods, Tilde and FORF. The results, presented
in Figure 14, show that without regularization, the MODL approach obtains
competitive results.
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Table 3 Test accuracy results for the Musk1 and Musk2 datasets.

Dataset MODL MODL(NR) Tilde FORF

Musk1 0.642± 0.092 0.837± 0.102 0.806± 0.170 0.869± 0.127
Musk2 0.608± 0.037 0.795± 0.108 0.737± 0.134 0.811± 0.095

Table 3 reports the detailed accuracy results obtained by each method
using the largest number of generated features. Despite the large standard
deviations, the results obtained by MODL are better without than with reg-
ularization, and equivalent to the results of FORF.

Let us now focus on the Musk1 dataset to illustrate how the regularization
actually works. In the ten-fold experiments with 10,000 generated features,
MODL keeps only two features after filtering the features whose cost is be-
yond the cost of the null model (see Section 2.3). Without regularization,
the construction cost L(MC(X)) is not exploited and around 1,650 features
are kept after filtering; these many features explain the improvement in test
accuracy.

Table 4 Null cost for the Musk1 dataset.

Cost term Formula Approximation nats

Construction model L(MC(∅)) 0 0
Preparation model L(MP (∅)) logN 4.4
Data L(DY |MP (∅)) Nent(Y ) 55.4
Total costP (∅) 59.8

Let us compute an approximation of the costs for Musk1, using a training
dataset containing N = 80 instances with two equidistributed targets (N.1 =
N.2 = 40, ent(Y ) = log 2). Using the notations of Section 2.3, the null cost
is evaluated in Table 4. It takes about 59.8 nats3 to encode the class values
without using any input feature.

With regularization, the most informative generated feature X is Min
(Conformations.f129), where Min is chosen among the set {Min, Max, Mean,
Median, StdDev, Sum} of nc = 6 construction rules and f129 is a numerical
secondary feature chosen among the ns = 166 available ones. The optimal
discretization of X consists in two intervals, with the first one containing
N1. = 20 molecules of the same class (N11 = 20, N12 = 0, ent(Y |XInt1) = 0)
and the second one containing N2. = 60 molecules with the remaining classes
(N21 = 20, N22 = 40, ent(Y |XInt2) = − 1

3 log 1
3 −

2
3 log 2

3 ≈ 0.64).

3 the nat is the natural unit of information based on natural logarithm rather than base
2 logarithm, which defines the bit
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Table 5 Cost of the most informative feature for the Musk1 dataset.

Cost term Formula Approximation nats

Construction model L(MC(X)) lognc + logns 6.9
Preparation model (bound position) L(MPBound

(X)) logN 4.4
Preparation model (interval 1) L(MPInt1

(X)) logN1. 3.0

Preparation model (interval 2) L(MPInt2
(X)) logN2. 4.1

Data (interval 1) L(DYInt1
|MP (X), DXInt1

) N1.ent(Y |XInt1 ) 0.0

Data (interval 2) L(DYInt2
|MP (X), DXInt2

) N2.ent(Y |XInt2 ) 38.2

Total costCP (X) 56.6

The cost of X is detailed in Table 5. It is 3.2 nats below the cost of the
null model and the generated feature is thus detected as informative. However,
the gain in nats compared to the null model is very small, and more complex
features such as Mean (Conformations.f152) where f82 ≥ 2.5 are filtered since
their construction cost is larger and not counterbalanced by a gain in the data
cost.

Interestingly, Table 5 shows that the construction and preparation costs
grow logarithmically with the complexity of the construction domain and the
sample size, whereas the data cost is proportional to the gain in conditional
entropy and decreases linearly with the sample size. In the case of the Musk1
and Musk2 datasets, the classes are not fully separable even with complex
constructed features, and the overhead in construction or preparation cost does
not compensate for the gain in data cost. A few tenths additional instances
(like in the mutagenesis dataset) would be necessary to keep more constructed
features so as to improve the test accuracy.

Does it mean that the MODL method is over-regularized? As a matter of
fact, trading robustness for a better sensitivity to pattern detection does not
look interesting in an industrial context, where the high resilience to overfit-
ting is a key advantage. Instead of introducing a user parameter to decrease
the weight of the regularization terms, a more promising direction is to work
on the design of more parsimonious priors for feature construction or data
preparation. Still, in case of tiny datasets and complex construction domains,
there is a limit to what can be learned robustly.

For example, the Michalski’s train dataset presented in Figure 15 is a toy
problem of size ten that aims at finding rules that distinguish Eastbound
trains from Westbound trains. Overall, 10 bits (6.9 nats) are sufficient to
encode the class labels whereas the construction domain allows to construct
a huge number of features, far beyond 1,000. As log2 1, 000 ≈ 10, this means
that whatever be the labels of the ten trains, it is likely to find rules that
separate the labels perfectly. Furthermore, even when restricting to “simple”
rules, there are certainly many candidate rules that get a perfect accuracy on
the ten trains. Given new trains from a test datasets, among those ”perfect”
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Fig. 15 Michalski’s original set of 10 trains.

rules, some may fit the new data well whereas others are likely to make errors:
choosing one best rule among all candidates is quite close to making a random
guess. In this case, expressive methods that are able to fit any data are not
likely to be resilient to overfitting. And the role of regularization is to penalize
over-complex rules that can be selected only if they are supported by enough
data.

6 Orange Call Detail Records Dataset

We introduce the Orange call detail records (CDR) dataset, present exper-
imental results for three classification tasks and discuss open questions for
future research directions.

6.1 Description of the dataset

The Orange CDR dataset originates from Orange, a major french telecom-
munication company. The objective of releasing these data is to provide the
multi-relational data mining academic community with a challenging dataset,
representative of real world multi-table classification problems.

The data comes from a real Orange database (from year 2007), with raw
uncleaned data. It is structured as a star schema, with a main table containing
100,000 customers and a secondary table containing six months of CDRs per
customer, with a total amount of 37 million CDRs and 1.3 GB storage in a
tabular format.

The customer table consists in two fields:

– Categorical Id: identifier of the customer,
– Categorical Target: target column.

Three targets are provided, which are representative of the difficulty of
marketing tasks, such as churn, fraud or up-selling. The proposed targets are
related to classification tasks that deal with the problem of filling missing
values in real world datasets:
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– Gender: (Male; Female),
– AgeRange: (20-30 ; 30-40 ; 40-50 ; 50-60 ; 60-90 ),
– Region: (DOM, IdF, North-East, South-East, South-West, West).

The CDR table contains nine fields:

– Categorical Id: identifier of the customer,
– Numerical Weekday,
– Time (formatHH:MM:SS ),
– Numerical Duration,
– Numerical InVolume,
– Numerical OutVolume,
– Categorical TypeA,
– Categorical TypeB,
– Categorical TypeC.

For proprietary, privacy and scalability reasons, only a small fraction of
the tables and fields in the original Orange dataset has been released, with the
main following transformation rules:

– the Id is a categorical column, between I000001 and I100000,
– the empty (categorical) or missing (numerical) values are preserved,
– the numerical columns are slightly shuffled

(multiplied by (1 + random() ∗ 10−3),
– the InVolume and OutVolume are normalized between 0 and 109,
– all numerical values are then truncated to integer precision,
– the Time column is truncated with 10 minutes precision,
– the three columns TypeA, TypeB and TypeC, which represent different cat-

egorizations of the CDRs, are recoded with values {a1, a2, a3, a4}, {b1, b2, b3}
and {c1, c2, c3, c4}.

The data are divided into training and test datasets, each containing 50,000
customers. Altogether, there are three customer files (one per target) and one
CDR file, for training and for testing. 4.

There are on average 375 CDRs per customer in the training dataset, with
a standard deviation of 630 and a maximum of 40,000. Figure 16 shows the
distribution of the numbers of CDRs per customer using a log scale on each
axis, with more than 80% of the customer having between 100 and 1,000 CDRs.

6.2 Experimental results

Among the methods evaluated in Section 5, only the MODL, RELAGGS, car-
dinalisation and quantilisation methods could be applied to the Orange CDR
dataset without scalability issue. The ranking/ordering of objects is more im-
portant than the prediction as it is usual in marketing tasks to select a relevant
number of predicted positive. Hence, the Area under the ROC curve (AUC)

4 The dataset will be available in the UCI repository
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Fig. 16 Number of CDRs per customer.

(Fawcett 2003) is used rather than the accuracy to assess the performance
of each method. For multi-class AUC, we use the approach of (Provost and
Domingos 2001) by computing each one-against-the-others two-class AUC and
weighting them by the class prior probabilities.
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Fig. 17 Training time (left) and test AUC (right) versus the number of generated features
per dataset.
MODL: ◦ red RELAGGS: � navy Quantil.: ? green Cardinal.: • lime

We train each classifier on the training dataset for the three targets and
report both the training time and the test AUC in Figure 17.
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6.2.1 Training time results

The overall training time of the MODL method includes the feature construc-
tion, feature preprocessing (discretization and value grouping) and the feature
selection time in the Selective Naive Bayesian (SNB) classifier. The feature con-
struction time depends on the number of secondary records and the complexity
of the construction formulas; overall, it is roughly linear with the number of
generated features. The feature preprocessing time is O(KN log(N) C), where
K is the number of features, N the number of instances and C the number
of classes of the target feature (see time complexity of preprocessing methods
(Boullé 2006, 2005)). The feature selection time is O(K?N log(KN) C) (see
time complexity of the SNB classifier (Boullé 2007)), where K? is the number
of features kept after filtering the non-informative features (see Section 2.5).
Figure 17 (left) confirms that the overall training time grows almost linearly
with the number of generated features. For small numbers of features, typ-
ically less than 100, a constant training time is needed, because the whole
dataset including all training instances and secondary records must be read
at least once. Beyond this threshold, the training time is dominated by the
feature selection time, especially when the number K? of informative features
is high. The quantilisation and especially the cardinalisation methods require
less training time because they produce many non-informative features that
are filtered before the feature selection step. The largest representation with
100,000 generated features involves a dataset with five billion values (50,000
instances × 100,000 features), each computed using a complex formula involv-
ing around 400 CDRs. In this extreme case, the MODL method needs around
one day training time 5 for the Gender target and two days for the other two
targets that have 4 and 5 classes.

6.2.2 Test AUC results

Figure 17 (right) shows that the MODL method dominates the other evaluated
methods, whatever be the number of generated features.

The RELAGGS method is quite competitive, getting good performance
with few generated features. However its expressivity is limited to features
involving at most one secondary feature and this prevents the method from
obtaining top performance.

The quantilisation and cardinalisation methods construct features accord-
ing to one user parameter, the number of intervals per secondary feature. The
performance of both methods increases with the number of generated fea-
tures, but they reach a plateau as soon as the number of generated features
per secondary numerical feature reaches the number of values per instance.
Because of the unbalanced distribution of number of CDRs per customer (see
Figure 16), the cardinalisation method needs to construct more features to dis-
cretize efficiently the secondary numerical features, and does not even reach

5 Training time on a PC Intel Xeon L5640, Windows, using one single processor and 40
GB RAM
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the performance of the quantilisation method. The quantilisation method per-
forms only slightly better than the RELAGGS method, with at most 0.01
better test AUC, in spite of far larger numbers of generated features. Over-
all, the quantilisation and cardinalisation generated features are too simple to
reach superior performance.

The MODL method, which has a strict control over the number of gener-
ated features, is able to construct complex features such as “StdDev(CDRs.Duration)
where OutVolume in ]150, 6350] and Time in ]09:40, 14:10]” and to assess
their informativeness efficiently and reliably. The SNB classifier exploits this
representation space and obtains test performance that significantly increases
with the number of features and dominates the other evaluated methods. How-
ever, whereas the MODL method attained a plateau of performance within a
few hundred or a thousand features in the benchmark experiments presented
in Section 5, this is not the case for the Orange CDR dataset. Especially in
the case of the Region target, the AUC is 0.659 for 1,000 features, 0.690 for
10,000 features and 0.712 for 100,000 features. It still increases significantly
beyond 10,000 generated features and the plateau of performance has not been
reached.

6.3 Discussion

The experiments performed with the Orange CDR dataset show that the re-
lated classification tasks are challenging for the objective of automatic feature
construction, with both scalability and performance issues. This suggests that
human expert tuned methods could obtain superior performance and that
there is room for improvement in automatic data mining.

The MODL approach presented in this paper has demonstrated appealing
properties for automation, scalability, robustness and performance on classifi-
cation tasks from relational data, but many questions remain open, that may
stimulate future research directions:

– beyond the random sampling algorithm exploited to construct features (cf.
Section 4.2), how to better explore the huge space of potential representa-
tions to achieve better performance with fewer features?

– how to construct features that are both informative individually and non
redundant, so as to get a set of features that are informative collectively?

– how to extend the specification of the feature construction domain, with
more complex data structures and larger number of construction rules,
while keeping the robustness, scalability and performance of the approach?

– how to efficiently address the problem of anytime learning, with potentially
large and complex multi-table databases and infinite number of potential
representations?

– how to efficiently parallelize the whole training process, considering feature
construction, preprocessing and selection in an anytime setting?
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7 Related works

We propose an efficient propositionalization approach for Bayesian classifi-
cation of mixed numerical and categorical data. Therefore, related works are
first-order Bayesian classifiers and propositionalization approaches able to deal
with mixed numerical and categorical data, in particular apply typical aggre-
gation functions such as min, max, etc. to the numerical columns of secondary
tables.

This work follows a long history of propositionalization approaches. Sev-
eral years before Kramer et al (1998) defined the term propositionalization
itself, LINUS (Lavrac et al 1991) was already generating elementary features:
features relating a single property of a secondary table through one or sev-
eral one-to-many relationships using existential quantifiers. This is similar to
the elementary features generated exhaustively by 1BC. Many approaches use
frequent patterns or queries for propositionalization, e.g. (Zelezný and Lavrac
2006; Landwehr et al 2007). However, most propositionalization approaches
only deal with the set of objects related to the main individual, for example
all the calls of one customer, using the existential quantifier only, e.g. “there ex-
ists a phone call such that...” This includes recent works, for instance (Kuzelka
and Zelezný 2011), which can very efficiently generate complex features, in-
volving several properties of several kinds of related objects but through exis-
tential quantifiers only. Moreover, they mainly deal with numerical attributes
by discretising them into categorical attributes. Similarly, most full-fledged
relational data mining systems, directly learning from relational data without
propositionalizing and using an external attribute-value learner, focus on the
existential quantifier and categorical data too. Only the ACE system integrates
complex aggregates (Van Assche et al 2006) into first-order trees, Tilde, and
into first-order random forests, FORF. However they do not scale up well.

Knobbe et al (2001) and Krogel and Wrobel (2001) with their respective
systems POLKA and RELAGGS were the first to propose to use aggregation
functions other than the existential quantifier to build features. POLKA and
RELAGGS mainly differ in the way they deal with nested tables: tables re-
lated to secondary tables through further one-to-many relationships. POLKA
applies aggregation operators recursively, from the deepest relationship to the
main table. RELAGGS joins the secondary table to the lower level tables de-
pending on it, and then applies aggregation operators to the columns of the
joined table. These joins behave like the identifier propagation of Cross-mine
(Yin et al 2004). Whereas POLKA and RELAGGS consider simple aggregates,
applying one aggregation function to a set of related objects, satisfying a single
condition, we consider complex aggregates, applying one aggregation function
to a set of related objects satisfying complex conditions, possibly involving
conditions on complex aggregates of nested tables if any.

CILP++ (França et al 2014) is similar to our approach because it proposes
a propositionalization approach dedicated to an attribute-value learner. How-
ever, a neural network is considered whereas we focus on the naive Bayesian
classifier for scalability. Indeed, the reported run times go up to hours for
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datasets containing hundreds of individuals only. Moreover, their software
deals with categorical attributes mainly and the Bottom Clause Proposition-
alization cannot generate complex aggregates.

Focusing on first-order Bayesian classifiers now, MR-SBC (Ceci et al 2003)
is an alternative to 1BC and 1BC2. It builds exactly the same features as 1BC,
called elementary features in 1BC, which link a property of a related table to
the main table through a foreign key path. The main differences are that MR-
SBC connects to a Relational Database Management System whereas 1BCs
use prolog facts from a file, MR-SBC estimates the probabilities differently and
MR-SBC discretises numerical attributes differently. Thus, MR-SBC considers
exactly the same features as 1BC and the difference comes mainly from the
implementation of the propositional naive Bayesian classifier. Ceci et al (2003)
compared 1BC to MR-SBC and reports one win for 1BC and one win for MR-
SBC. Therefore, we consider they have an equivalent expressivity.

Graph-NB (Liu et al 2005) reduces the run time of Cross-mine (Yin et al
2004). It estimates probabilities of tables linked through a semantic relation-
ship graph, which acts as a language bias. The identifiers from the main ta-
ble are propagated to secondary tables, hence probabilities of related objects
necessarily take into account the repetitions of similar objects. Actually, the
estimated probabilities are similar to those of 1BC2. The accuracies reported
in (Liu et al 2005) are indeed similar to those of MR-SBC, 1BC and 1BC2.

The sampling algorithm is similar to the approach considered by Schietgat
et al (2011) in a graph context but has never been used in propositionalization.

8 Conclusion

Most companies nowadays claim that they want to get value out of the vast
amount of data they collect, but these data come in the form of potentially
complex relational schema. Mining these data requires to be able to generate
complex aggregates over mixed, numerical and categorical, data. The availabil-
ity of large datasets may be seen as an opportunity, since it may enable more
expressive learners to produce more accurate models. However such learners
can only seize this opportunity if they can scale up and do so without any
risk of overfitting. Our contribution is a new propositionalization approach
for a bayesian classifier that outperforms the state-of-the-art on most inves-
tigated datasets. It is robust: it does not overfit when the number of fea-
tures is increased. It is efficient: it can generate a given number of features,
in a breadth-first approach driven by the prior distribution of the features.
Whereas NFOIL proposes a dynamic propositionalization selecting the best
features for the bayesian classifiers, and Tilde and FORF similarly perform a
dynamic depth search, the MODL approach proposes a static propositional-
ization generating a large set of features through a breadth search. The curse
of dimensionality is kept under control by the regularization of the robust
classifier (SNB).
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The accuracy of the proposed approach generally increases with the num-
ber of features, thanks to its robustness, mainly due to regularization based
on the definition of a prior distribution over complex aggregates. The single
remaining parameter of our approach, the number of features, could be tuned
automatically. A wrapping script could implement a loop doubling the number
of features until the user stops it, in an anytime fashion. Also, the loop could
be stopped when the increase in accuracy falls below some threshold.

In future work, we plan to extend the description of the variable con-
struction domain by providing additional construction rules with potential
specialization per application domain. Another research direction consists in
drawing constructed variables according to their posterior distribution rather
than their prior distribution. Additionally, accounting for correlations between
the constructed variables so as to avoid the risk of constructing many variants
of the same variables raises another challenge.

Our approach (regularization, prior distribution, and breadth-first search)
could be investigated for other propositional learners, as long as they are
robust, for example SVM. It could even be integrated into full-fledged first-
order logic learners.
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