Predictor Rules
NBClassifier
Builds a Naive Bayes Classifier structure from a set of data grids stats that encode the target
conditional probabilities. Each data grid stats results from a preparation model (data grid) and
input values, which allows the computation of conditional probabilities.
SNBClassifier
Structure(Classifier) SNBClassifier(
Structure(Vector) variableWeights, Structure(DataGridStats) dataGridStats1, ...)
Classifier structure. The first parameter is weight
Vector for the selected variables. The remaining parameters are the
same as for the NBClassifier rule.
TargetValue
Computes a Classifier's most probable target value.
TargetProb
Computes the Classifiers probability of the most probable target value.
TargetProbAt
Computes the Classifier probability (score) of a given target value.
BiasedTargetValue
Computes the Classifier highest score target value, after adding a bias to each initial target
value score.
NBRankRegressor
Builds a Naive Bayes RankRegressor structure from a set of data grids stats.
SNBRankRegressor
Structure(RankRegressor) SNBRankRegressor(
Structure(Vector) variableWeights, Structure(DataGridStats) dataGridStats1, ...)
Builds a Selective Naive Bayes RankRegressor. The first parameter is weight
Vector for the selected variables. The remaining parameters are the
same as for the NBRankRegressor rule.
TargetRankMean
Computes the RankRegressor target rank mean.
TargetRankStandardDeviation
Computes the RankRegressor target rank's standard deviation.
TargetRankDensityAt
Computes the RankRegressor density of the target rank for a given normalized rank (between 0 and
1).
TargetRankCumulativeProbAt
Computes the RankRegressor probability that the target rank is below a given normalized rank.
NBRegressor
Structure(Regressor) NBRegressor(
Structure(RankRegressor) nbRankRegressor, Structure(DataGrid) targetValues)
Builds a Naive Bayes Regressor structure. The first parameter is a Naive Bayes RankRegressor.
The second parameter is the distribution of the numerical target values, encoded as a univariate
numerical data grid based on a vector of values partition.
SNBRegressor
Structure(Regressor) SNBRegressor(
Structure(RankRegressor) snbRankRegressor, Structure(DataGrid) targetValues)
Builds a Selective Naive Bayes Regressor structure from a RankRegressor.The first parameter is
a Naive Bayes RankRegressor. The second parameter is the distribution of the numerical target
values, encoded as a univariate numerical data grid based on a vector of values partition.
TargetMean
Computes the Regressor mean target value.
TargetStandardDeviation
Computes the Regressor standard deviation of the target value.
TargetDensityAt
Computes the Regressor density of the target for a given value.